1
|
Jian X, Wang J, Hu J, Li Y, Wang Q, Wang H, Huang J, Ke Y, Liao H. Intramuscular Reactivity of the Modified Graphene Oxides and Their Bio-Reactivity in Aging Muscle. J Funct Biomater 2025; 16:115. [PMID: 40278223 PMCID: PMC12027639 DOI: 10.3390/jfb16040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
To enhance the biocompatibility and drug delivery efficiency of graphene oxide (GO), poly(ethylene glycol) (PEG), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), or its triblock copolymer PEG-PHBV-PEG (PPP) were used to chemically modify GO. However, it is still unknown whether non-toxic polymer-modified GO mediates muscle toxicity or triggers intramuscular inflammation. This study aims to investigate the biological reactivity and inflammation/immune response induced by PEG, PHBV, or PPP modified GO when injected into the tibialis anterior (TA) muscle of mice prior to drug loading. The results showed that after muscle exposure, the coating of biocompatible polymers on GO is more likely to provoke muscle necrosis. Muscle regeneration was found to occur earlier and more effectively in muscle treated with hydrophilic PEG-GO and PPP-GO compared to muscle treated with hydrophobic PHBV-GO. When observing the transient muscle macrophage invasion of three modified GOs, PHBV-GO caused severe muscle necrosis in the early stage, induced a delayed peak of macrophage aggregation, and caused severe inflammatory progression. All three kinds of modified GO induced T cell aggregation to varying degrees, but PEG-GO induced early mass muscle recruitment of CD4+ T cells and was more sensitive to cytotoxic T cells. Based on the higher biocompatibility of PPP-GO in muscles, PPP-GO was implanted into the muscles of old or adult mice. Compared to adult mice, aged mice are more vulnerable to the stress from PPP-GO, as demonstrated by a delayed inflammatory response and muscle regeneration.
Collapse
Affiliation(s)
- Xiaoting Jian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Jiayin Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Qisen Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Han Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Jingwen Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Yu Ke
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| |
Collapse
|
2
|
Chen X, Cui H, Li H, Wang J, Fu P, Yin J, Tang S, Ke Y. Functionalization of graphene oxide with amphiphilic block copolymer to enhance antibacterial activity. Colloids Surf B Biointerfaces 2024; 234:113690. [PMID: 38086276 DOI: 10.1016/j.colsurfb.2023.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Functionalization of GO with an amphiphilic block copolymer is designed with an aim to enhance its biocompatibility, however, long copolymer chains can screen the blade effect of GO to sacrifice its antimicrobial activities. To solve this problem, low molecular weight of poly(ethylene glycol) (PEG), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and their block copolymer were respectively introduced onto GO via an isophorone diisocyanate modified GO as a intermediate, followed by a solvent evaporation of an oil-in-water emulsion treatment (SE treatment) to induce block copolymer into polymer micelle via phase separation to refresh the sharp edges of GO. Block copolymer modified GO possessed similar dispersibility and stability to PEG modified GO, and even higher loading capacity of the hydrophobic drug than PHBV modified GO, illustrating its superior properties to homopolymer. PEG, PHBV and their block copolymer modified GO were nontoxic towards ATDC5 cells while cultured for 3 days and compatible with erythrocytes within 8 h. SE treatment enhanced greatly the loading capacity of the hydrophobic drug and the accumulative release reached 91.3% within 24 h. The inhibition zone of the block copolymer modified GO was 14.1 mm and 14.8 mm against E. coli and S. aureus, comparable to that of PEG modified GO. The bacterial reduction rate of the copolymer micelle modified GO was 87.1% and 82.7% towards E. coli and S. aureus, much greater than that of PEG, PHBV and their block copolymer modified GO at a concentration of 1 mg/mL. The antibiofilm capacity of the copolymer micelle modified GO were equal to that of PEG modified, demonstrating its great promise in tissue engineering application for repair of infected tissue defects.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao Cui
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayin Wang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun Yin
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - ShunQing Tang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Figueroa-Lopez KJ, Prieto C, Pardo-Figuerez M, Cabedo L, Lagaron JM. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:823. [PMID: 36903702 PMCID: PMC10004799 DOI: 10.3390/nano13050823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food quality is mainly affected by oxygen through oxidative reactions and the proliferation of microorganisms, generating changes in its taste, odor, and color. The work presented here describes the generation and further characterization of films with active oxygen scavenging properties made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) loaded with cerium oxide nanoparticles (CeO2NPs) obtained by electrospinning coupled to a subsequent annealing process, which could be used as coating or interlayer in a multilayer concept for food packaging applications. The aim of this work is to explore the capacities of these novel biopolymeric composites in terms of O2 scavenging capacity, as well as antioxidant, antimicrobial, barrier, thermal, and mechanical properties. To obtain such biopapers, different ratios of CeO2NPs were incorporated into a PHBV solution with hexadecyltrimethylammonium bromide (CTAB) as a surfactant. The produced films were analyzed in terms of antioxidant, thermal, antioxidant, antimicrobial, optical, morphological and barrier properties, and oxygen scavenging activity. According to the results, the nanofiller showed some reduction of the thermal stability of the biopolyester but exhibited antimicrobial and antioxidant properties. In terms of passive barrier properties, the CeO2NPs decreased the permeability to water vapor but increased the limonene and oxygen permeability of the biopolymer matrix slightly. Nevertheless, the oxygen scavenging activity of the nanocomposites showed significant results and improved further by incorporating the surfactant CTAB. The PHBV nanocomposite biopapers developed in this study appear as very interesting constituents for the potential design of new active organic recyclable packaging materials.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
4
|
Zhong Q, Long H, Hu W, Shi L, Zan F, Xiao M, Tan S, Ke Y, Wu G, Chen H. Dual-Function Antibacterial Micelle via Self-Assembling Block Copolymers with Various Antibacterial Nanoparticles. ACS OMEGA 2020; 5:8523-8533. [PMID: 32337413 PMCID: PMC7178363 DOI: 10.1021/acsomega.9b04086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/01/2020] [Indexed: 06/02/2023]
Abstract
Antibacterial biomaterials with kill-resist dual functions by combining multiple active components have been constructed, with a final aim at decreasing the incidence of biomaterial-centered infection. Self-assemblies of bactericidal ZnO or Ag-ZnO nanoparticles (NPs) with triblock copolymers, poly(ethylene glycol)-b-poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(ethylene glycol) (PEG-PHBV-PEG), showed a hydrophobic PHBV layer on NPs with PEG segments exposed outside via hydrogen bonding, resulting in long PEG (M w = 2000) aggregation and short PEG (M w = 1000) aggregation, respectively. These nanocomposite aggregations released ZnO or Ag-ZnO rapidly within initial few hours, and about 42-45% of NPs were left in the nanocomposites in deionized water for 16 d to improve the long-term antibacterial activity further. At the concentration below 50 μg/mL, the nanocomposite aggregation was cell-compatible with ATDC5 and showed sterilization rates over 91% against Escherichia coli and 98% against Staphylococcus aureus. Long PEG aggregation showed greater cell proliferation capacity than short PEG aggregation, as well as better bacterial resistance and bactericidal activity against both E. coli and S. aureus. The flexible self-assembling antibacterial NPs with antifouling block copolymers via adjusting the component ratio or the segment length have shown premise in the construction of the dual-function antibacterial materials.
Collapse
Affiliation(s)
- Qing Zhong
- Guangdong Engineering
& Technology Research Centre of Graphene-Like Materials and Products,
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Hui Long
- Guangdong Engineering
& Technology Research Centre of Graphene-Like Materials and Products,
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Wei Hu
- Guangdong Engineering
& Technology Research Centre of Graphene-Like Materials and Products,
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Liujun Shi
- Guangdong Engineering
& Technology Research Centre of Graphene-Like Materials and Products,
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Fei Zan
- Department of Biomedical Engineering, South
China University of Technology, Guangzhou 510641, China
| | - Meng Xiao
- Guangdong Engineering
& Technology Research Centre of Graphene-Like Materials and Products,
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shaozao Tan
- Guangdong Engineering
& Technology Research Centre of Graphene-Like Materials and Products,
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yu Ke
- Department
of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong
Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gang Wu
- Department of Biomedical Engineering, South
China University of Technology, Guangzhou 510641, China
| | - Huifang Chen
- College of Pharmacy, Guangdong
Lingnan Institute of Technology, Guangzhou 510663, China
| |
Collapse
|