Braidi N, Porcelli N, Roncaglia F, Mucci A, Tassinari F. Could Olympic Gels of Polystyrene be Produced by ARGET ATRP From Bifunctional Initiators?
Macromol Rapid Commun 2025;
46:e2400564. [PMID:
39254520 PMCID:
PMC11713849 DOI:
10.1002/marc.202400564]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Indexed: 09/11/2024]
Abstract
The kinetics of gelation in the Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization (ARGET ATRP) of styrene, using a bifunctional initiator and no crosslinking agents are investigated. By applying the method of moments, we develop a system of differential equations that accounts for the formation of polymer rings. The kinetic rate constants of this model are optimized on the experimentally determined kinetics, varying the reaction temperature and ethanol fraction. Subsequently, we explore how variations in the amounts of catalyst, initiator, and reducing agents affect the simulated equilibria of ARGET ATRP, the emergence of gelation, and the swelling properties of the resulting networks. These findings suggest that favoring ring formation enhances the gelation phenomenon, supporting the hypothesis that the networks formed under the reported reaction conditions are olympic gels.
Collapse