1
|
Ding JF, Yamanaka K, Hong SH, Chen GL, Wu WN, Lin JM, Tung SH, Osaka I, Liu CL. Controlling the Thermoelectric Performance of Doped Naphthobisthiadiazole-Based Donor-Acceptor Conjugated Polymers through Backbone Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410046. [PMID: 39488764 DOI: 10.1002/advs.202410046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Indexed: 11/04/2024]
Abstract
This study investigates backbone engineering and evaluates the thermoelectric properties of FeCl3-doped naphthobisthiadiazole (NTz)-based donor-acceptor (D-A) conjugated polymer films. The NTz acceptor unit is coupled with three distinct donor units, namely dialkylated terthiophene (3T), dialkylated quaterthiophene (4T), and dialkylated bisthienyl thienothiophene (2T-TT) to yield copolymers designated as PNTz3T, PNTz4T, and PNTzTT. The difference in donor units leads to diverse molecule stacking and electronic properties, which can be systematically discovered via the three polymers. The linear structure of PNTz4T enables an orderly arrangement of side chains, thereby promoting dopant intercalation for enhanced carrier concentration. Additionally, this linear structure leads to an edge-on stacking mode, thereby improving the in-plane carrier mobility. As a result, the doped PNTz4T exhibits the highest electrical conductivity (σ) of 88.3 S cm-1 along with a Seebeck coefficient (S) of 62.2 µV K-1, thereby achieving the highest power factor (PF) of 34.2 µW m-1 K-2. These results highlight the relationship between the molecular design, microstructure, and doping effects in manipulating the thermoelectric performance of doped NTz-based D-A polymers.
Collapse
Affiliation(s)
- Jian-Fa Ding
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Kodai Yamanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Guan-Lin Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Ni Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Itaru Osaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Choi W, Kim S, Lee S, Jung C, Tripathi A, Lee Y, Woo HY, Lee H. Unravelling Disorder Effects on Thermoelectric Properties of Semicrystalline Polymers in a Wide Range of Doping Levels. SMALL METHODS 2023; 7:e2201145. [PMID: 36440652 DOI: 10.1002/smtd.202201145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Thermoelectric (TE) performance of a specific semicrystalline polymer is studied experimentally only in a limited range of doping levels with molecular doping methods. The doping level is finely controlled via in situ electrochemical doping in a wide range of carrier concentrations with an electrolyte ([PMIM]+ [TFSI]- )-gated organic electrochemical transistor system. Then, the charge generation/transport and TE properties of four p-type semicrystalline polymers are analyzed and their dynamic changes of crystalline morphologies and local density of states (DOS) during electrochemical doping are compared. These polymers are synthesized based on poly[(2,5-bis(2-alkyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophene-2-yl)benzo[c][1,2,5]thiadiazole)] by varying side chains: With oligoethylene glycol (OEG) substituents, facile p-doping is achieved because of easy penetration of TFSI- ions into the polymer matrix. However, the charge transport is hindered with longer OEG chains length because of the enhanced insulation. Therefore, with the shortest OEG substituents the electrical conductivity (30.1 S cm-1 ) and power factor (2.88 µW m-1 K-2 ) are optimized. It is observed that all polymers exhibit p- to n-type transition in Seebeck coefficients in heavily doped states, which can be achieved by electrochemical doping. These TE behaviors are interpreted based on the relation between the localized DOS band structure and molecular packing structure during electrochemical doping.
Collapse
Affiliation(s)
- Woojin Choi
- School of Materials Science and Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Soohyun Kim
- School of Materials Science and Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Soonyong Lee
- Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Changhwa Jung
- School of Materials Science and Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Ayushi Tripathi
- Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonjoo Lee
- Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Lee
- School of Materials Science and Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| |
Collapse
|