1
|
Yang M, Li X, Yao N, Yu J, Yin X, Zhang S, Ding B. Two-Dimensional Piezoelectric Nanofibrous Webs by Self-Polarized Assembly for High-Performance PM 0.3 Filtration. ACS NANO 2024; 18:16895-16904. [PMID: 38906832 DOI: 10.1021/acsnano.4c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Particulate matter (PM) pollution has posed a serious threat to public health, especially the global spread of infectious diseases. Most existing air filtration materials are still subjected to a compromise between removal efficiency and air permeability on account of their stacking bulk structures. Here, we proposed a self-polarized assembly technique to create two-dimensional piezoelectric nanofibrous webs (PNWs) directly from polymer solutions. The strategy involves droplets deforming into ultrathin liquid films by inertial flow, liquid films evolving into web-like architectures by instantaneous phase inversion, and enhanced dipole alignment by cluster electrostatics. The assembled continuous webs exhibit integrated structural superiorities of nanoscale diameters (∼20 nm) of the internal fibers and through pores (∼100 nm). Combined with the wind-driven electrostatic property derived from the enhanced piezoelectricity, the PNW filter shows high efficiency (99.48%) and low air resistance (34 Pa) against PM0.3 as well as high transparency (84%), superlight weight (0.7 g m-2), and long-term stable service life. This creation of such versatile nanomaterials may offer insight into the design and upgrading of high-performance filters.
Collapse
Affiliation(s)
- Ming Yang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xiaoxi Li
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ni Yao
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xia Yin
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Huang R, Dai Y, Ahmed J, Edirisinghe M. Facile One-Step Synthesis of PVDF Bead-on-String Fibers by Pressurized Gyration for Reusable Face Masks. Polymers (Basel) 2022; 14:4498. [PMID: 36365492 PMCID: PMC9654049 DOI: 10.3390/polym14214498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Single-use face masks pose a threat to the environment and are not cost-effective, which prompts the need for developing reusable masks. In this study, pressurized gyration (PG) successfully produced bead-on-string polyvinylidene fluoride (PVDF) fibers with fiber diameters ranging from 2.3 μm to 26.1 μm, and bead diameters ranging from 60.9 μm to 88.5 μm by changing the solution parameters. The effect of the solution parameters on the crystalline phase was studied by Fourier-transform infrared spectroscopy (FT-IR), where the β-phase contents of PG PVDF fibers reached over 75%. The fiber morphology and β-phase contents of PG PVDF fibers indicated the potential mechanical and electrostatic filtration efficiency of PG PVDF fibers, respectively. Additionally, the hydrophobicity was investigated by static water contact angle tests, and the PVDF fibers showed superior hydrophobicity properties (all samples above 125°) over commercial polypropylene (PP) single-use masks (approximately 107°). This study supports the notion that the PG PVDF fiber mats are a promising candidate for future reusable face masks.
Collapse
Affiliation(s)
| | | | | | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|