1
|
Skjold V, Afanasyev S, Burgerhout E, Sveen L, Rørvik KA, Mota VFCN, Dessen JE, Krasnov A. Endocrine and Transcriptome Changes Associated with Testicular Growth and Differentiation in Atlantic Salmon ( Salmo salar L.). Curr Issues Mol Biol 2024; 46:5337-5351. [PMID: 38920991 PMCID: PMC11202266 DOI: 10.3390/cimb46060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.
Collapse
Affiliation(s)
- Vetle Skjold
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 Saint Petersburg, Russia;
| | - Erik Burgerhout
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Lene Sveen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Kjell-Arne Rørvik
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | | | - Jens-Erik Dessen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Aleksei Krasnov
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| |
Collapse
|
2
|
Golpour A, Siddique MAM, Siqueira-Silva DH, Pšenička M. Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Dazl is a critical player for primordial germ cell formation in medaka. Sci Rep 2016; 6:28317. [PMID: 27328644 PMCID: PMC4916430 DOI: 10.1038/srep28317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 11/27/2022] Open
Abstract
The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained unknown whether this family is required for PGC formation in developing embryos. Our recent study in the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the presence of additional factors essential for PGC formation. Here we report that dazl is a second key player for medaka PGC formation. Dazl knockdown did not prevent PGC formation even in the absence of normal somatic structures. It turned out that a high level of Dazl protein was maternally supplied and persisted until gastrulation, and hardly affected by two antisense morpholino oligos targeting the dazl RNA translation. Importantly, microinjection of a Dazl antibody remarkably reduced the number of PGCs and even completely abolished PGC formation without causing detectable somatic abnormality. Therefore, medaka PGC formation requires the Dazl protein as maternal germ plasm component, offering first evidence that dazl is a critical player in PGC formation in vivo. Our results demonstrate that antibody neutralization is a powerful tool to study the roles of maternal protein factors in PGC development in vivo.
Collapse
|
4
|
Liu R, Li M, Li Z, Hong N, Xu H, Hong Y. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation. Stem Cell Rev Rep 2015; 11:11-23. [PMID: 25142379 DOI: 10.1007/s12015-014-9523-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The origin and evolution of molecular mechanisms underlying cellular pluripotency is a fundamental question in stem cell biology. The transcription factor Oct4 or Pou5f1 identified in mouse features pluripotency expression and activity in the inner cell mass and embryonic stem (ES) cells. Pou2 identified in zebrafish is the non-mammalian homolog prototype of mouse Oct4. The genes oct4 and pou2 have reportedly evolved by pou5 gene duplication in the common ancestor of vertebrates. Unlike mouse oct4, however, zebrafish pou2 lacks pluripotency expression and activity. Whether the presence of pluripotency expression and activity is specific for mammalian Oct4 or common to the ancestor of vertebrate Oct4 and Pou2 proteins has remained to be determined. Here we report that Oloct4, the medaka oct4/pou2, is essential for early embryogenesis and pluripotency maintenance. Oloct4 exists as a single copy gene and is orthologous to pou2 by sequence and chromosome synteny. Oloct4 expression occurs in early embryos, germ stem cells and ES cells like mouse oct4 but also in the brain and tail bud like zebrafish pou2. Importantly, OlOct4 depletion caused blastula lethality or blockage. We show that Oloct4 depletion abolishes ES cell derivation from midblastula embryos. Thus, Oloct4 has pluripotency expression and is essential for early embryogenesis and pluripotency maintenance. Our results demonstrate the conservation of pluripotency expression and activity in vertebrate Oct4 and Pou2 proteins. The finding that Oloct4 combines the features of mouse oct4 and zebrafish pou2 in expression and function suggests that Oloct4 might represent the ancestral prototype of vertebrate oct4 and pou2 genes.
Collapse
Affiliation(s)
- Rong Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | | | |
Collapse
|
5
|
Dwarakanath M, Lim M, Xu H, Hong Y. Differential expression of boule and dazl in adult germ cells of the Asian seabass. Gene 2014; 549:237-42. [PMID: 25084124 DOI: 10.1016/j.gene.2014.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/06/2014] [Accepted: 07/24/2014] [Indexed: 12/22/2022]
Abstract
Fertility genes boule and dazl constitute the evolutionarily conserved DAZ (Deleted in AZoospermia) family of RNA binding proteins essential for germline development across animal phyla. Here we report the cloning and expression analysis of boule and dazl from the Asian seabass (Lates calcarifer), a marine fish that undergoes sequential male-to-female sex reversal. Molecular cloning and sequence comparison led to the identification of boule and dazl cDNAs. RT-PCR analysis showed that both boule and dazl RNAs were restricted to the gonads among adult organs examined. Chromogenic in situ hybridization revealed germ cell-specific expression for both boule and dazl in female and male adults. Importantly, distinct differences were found between boule and dazl in terms of temporospatial expression and subcellular distribution. The boule RNA was abundant in late gametogenic cells except sperm. Interestingly, dazl expression increases in early oocytes and concentrates in a perinuclear speckle that appears to develop ultimately into the Balbiani body in advanced oocytes. The dazl RNA was found to be abundant in spermatocytes but hardly detectable in sperm. These data demonstrate that boule and dazl are germ cell markers in the adult Asian seabass, and that bisexual germline-specific expression has been conserved for boule and dazl in fish.
Collapse
Affiliation(s)
- Manali Dwarakanath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Menghuat Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
6
|
Bhat N, Hong Y. Cloning and expression of boule and dazl in the Nile tilapia (Oreochromis niloticus). Gene 2014; 540:140-5. [PMID: 24607036 DOI: 10.1016/j.gene.2014.02.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 11/26/2022]
Abstract
The Deleted in Azoospermia (DAZ) family of RNA binding proteins consists of highly conserved genes boule, daz and daz-like (dazl) essential for germ cell development. boule is known for its unisexual meiotic expression in invertebrates and mammals, but meiotic-specific female expression plus meiosis-preferential male expression in trout, and meiosis-preferential bisexual expression in medaka. dazl shows highly conserved bisexual expression throughout gametogenesis in diverse species. Here we report the cloning and expression of boule and dazl in the Nile tilapia (Oreochromis niloticus), an important aquaculture fish. Molecular cloning and sequence analysis led to the identification of tilapia boule and dazl cDNAs. The predicted partial Boule contains a conserved RRM motif and Dazl has the C-terminal sequence. On a phylogenetic tree, tilapia Boule and Dazl are in separate clades of Boule and Dazl homologs from other species, indicating their divergence during early vertebrate evolution. By RT-PCR analysis, boule and dazl showed bisexual gonad-specific expression. By in situ hybridization analysis, both boule and dazl RNAs were restricted to female and male germ cells of adult gonads but absent in gonadal soma. In the ovary, boule and dazl RNAs were abundant in oocytes. In the testis, boule and dazl RNAs were prominent in meiotic spermatocytes but barely detectable in meiotic products. These data show that boule and dazl are expressed bisexually in germ cells and provide useful markers to study gametogenesis in the adult tilapia.
Collapse
Affiliation(s)
- Narayani Bhat
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
7
|
Xu H, Lim M, Dwarakanath M, Hong Y. Vasa identifies germ cells and critical stages of oogenesis in the Asian seabass. Int J Biol Sci 2014; 10:225-35. [PMID: 24550690 PMCID: PMC3927134 DOI: 10.7150/ijbs.6797] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022] Open
Abstract
Germ cells produce sperm and eggs for reproduction and fertility. The Asian seabass (Lates calcarifer), a protandrous marine fish, undergoes male-female sex reversal and thus offers an excellent model to study the role of germ cells in sex differentiation and sex reversal. Here we report the cloning and expression of vasa as a first germ cell marker in this organism. A 2241-bp cDNA was cloned by PCR using degenerate primers of conserved sequences and gene-specific primers. This cDNA contains a polyadenylation signal and a full open reading frame for 645 amino acid residues, which was designated as Lcvasa for the seabass vasa, as its predicted protein is homologous to Vasa proteins. The Lcvasa RNA is maternally supplied and specific to gonads in adulthood. By chromogenic and fluorescent in situ hybridization we revealed germ cell-specific Lcvasa expression in both the testis and ovary. Importantly, Lcvasa shows dynamic patterns of temporospatial expression and subcellular distribution during gametogenesis. At different stages of oogenesis, for example, Lcvasa undergoes nuclear-cytoplasmic redistribution and becomes concentrated preferentially in the Balbiani body of stage-II~III oocytes. Thus, the vasa RNA identifies both female and male germ cells in the Asian seabass, and its expression and distribution delineate critical stages of gametogenesis.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Menghuat Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Manali Dwarakanath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
8
|
Li M, Zhu F, Hong Y. Differential evolution of duplicated medakafish mitf genes. Int J Biol Sci 2013; 9:496-508. [PMID: 23781143 PMCID: PMC3677685 DOI: 10.7150/ijbs.4668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 05/08/2013] [Indexed: 12/22/2022] Open
Abstract
Gene duplication is a major force of evolution. One whole genome duplication (WGD) event in the fish ancestor generated genome-wide duplicates in all modern species. Coloration and patterning on the animal body surface exhibit enormous diversity, representing a mysterious and ideal system for understanding gene evolution. Surface colors and patterns are determined primarily by pigment cells in the skin and eye. Thus, microphthalmia-associated transcription factor (Mitf) as a master regulator of melanocyte development is excellent for studying the evolution of WGD-derived gene duplicates. Here we report the evolution of mitf duplicate, mitf1 and mitf2, in the fish medaka (Oryzias latipes), which encode medaka co-homologs Mitf1 and Mitf2 of the mouse Mitf. Compared to mitf1, mitf2 exhibits an accelerated sequence divergence and loses melanocytic expression in embryos at critical developmental stages. Compared to a Xiphophorus counterpart, the medaka Mitf2 displayed a reduced activity in activating melanogenic gene expression by reporter assays and RT-PCR analyses. We show that the medaka Mitf2 has the ability to induce melanocyte differentiation in medaka embryonic stem cells but at a remarkably reduced efficiency compared to the Xiphophorus counterpart. Our data suggest differential evolution of the medaka mitf duplicate, with mitf1 adopting conservation and mitf2 employing degeneration, which is different from the duplication-degeneration-complementation proposed as the mechanism to preserve many gene duplicates in zebrafish. Our finding reveals species-specific variations for mitf duplicate evolution, in agreement with enormous diversity of body coloration and patterning.
Collapse
Affiliation(s)
- Mingyou Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | |
Collapse
|
9
|
Liu S, Hui TH, Tan SL, Hong Y. Chromosome evolution and genome miniaturization in minifish. PLoS One 2012; 7:e37305. [PMID: 22615970 PMCID: PMC3353929 DOI: 10.1371/journal.pone.0037305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background Paedocypris is a newly established genus of fish in Southeast Asia. Paedocypris is characterized by several unique features, including a tiny adult size (thus named miniature fish or minifish), fragmentary habitats of acidic peat blackwater swamps, an unusual reproduction mode and truncated development. These peculiarities lend themselves excellent for studying chromosome evolution and rapid speciation in vertebrates but also make them highly controversial for the phylogenetic position. Methodology and Principal Findings We have established an organ procedure to prepare chromosome spreads from tiny organs of minifish and performed a cytogenetic study on two species of the genus Paedocypris, namely P. carbunculus (Pc) and P. sp. “Singkep” (Ps). We found 30 and 34 chromosomes in diploid cells of Pc and Ps, respectively, which are unusual in teleost fishes. The diploid metaphase has 5 pairs of metacentrics and 7 pairs of subtelocentrics in Pc compared to 3 pairs of metacentrics and 11 pairs of subtelocentrics in Ps, whereas the haploid metaphase contains 5 metacentrics and 7 subtelocentrics in Pc compared to 3 metacentrics and 11 subtelocentrics Ps. Chromosome behavior in first meiosis revealed the presence of a chromosomal ring consisting of 2 metacentrics in Pc, suggesting that centric fusion rather than fission was responsible for the karyotypic evolution from Ps to Pc. Flow cytometry revealed that Pc had a 45% nuclear staining intensity relative to medaka whose genome is 700 Mb in size and contains 0.81 pg DNA. The Pc genome should have 315 Mb in length and 0.36 pg of DNA, which represent one of the smallest values in vertebrates, suggesting genome miniaturization in this organism. Conclusions Our data demonstrate that gross chromosome rearrangements and genome miniaturization have accompanied the evolution of Paedocypris fishes. Our data also place Paedocypris outside currently described taxa of the Cypriniformes.
Collapse
Affiliation(s)
- Shaojun Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tan Heok Hui
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sze Ley Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yunhan Hong
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|