1
|
Sun W, Dong Q, Li X, Gao J, Ye X, Hu C, Li F, Chen Y. The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B. Nat Commun 2024; 15:4322. [PMID: 38773107 PMCID: PMC11109203 DOI: 10.1038/s41467-024-48418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1's functionality.
Collapse
Affiliation(s)
- Wenqi Sun
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA.
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
2
|
Gao J, Sun W, Li J, Ban H, Zhang T, Liao J, Kim N, Lee SH, Dong Q, Madramootoo R, Chen Y, Li F. Rex1BD and the 14-3-3 protein control heterochromatin organization at tandem repeats by linking RNAi and HDAC. Proc Natl Acad Sci U S A 2023; 120:e2309359120. [PMID: 38048463 PMCID: PMC10723143 DOI: 10.1073/pnas.2309359120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Tandem DNA repeats are often organized into heterochromatin that is crucial for genome organization and stability. Recent studies revealed that individual repeats within tandem DNA repeats can behave very differently. How DNA repeats are assembled into distinct heterochromatin structures remains poorly understood. Here, we developed a genome-wide genetic screen using a reporter gene at different units in a repeat array. This screen led to identification of a conserved protein Rex1BD required for heterochromatin silencing. Our structural analysis revealed that Rex1BD forms a four-helix bundle structure with a distinct charged electrostatic surface. Mechanistically, Rex1BD facilitates the recruitment of Clr6 histone deacetylase (HDAC) by interacting with histones. Interestingly, Rex1BD also interacts with the 14-3-3 protein Rad25, which is responsible for recruiting the RITS (RNA-induced transcriptional silencing) complex to DNA repeats. Our results suggest that coordinated action of Rex1BD and Rad25 mediates formation of distinct heterochromatin structure at DNA repeats via linking RNAi and HDAC pathways.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, NY10003
| | - Wenqi Sun
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Jie Li
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai201210, China
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY10003
| | - Tuokai Zhang
- Department of Biology, New York University, New York, NY10003
| | - Junwei Liao
- Department of Biology, New York University, New York, NY10003
| | - Namho Kim
- Department of Biology, New York University, New York, NY10003
| | - Soon Hoo Lee
- Department of Biology, New York University, New York, NY10003
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY10003
| | | | - Yong Chen
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Fei Li
- Department of Biology, New York University, New York, NY10003
| |
Collapse
|
3
|
Dong Q, Li F. Cell cycle control of kinetochore assembly. Nucleus 2022; 13:208-220. [PMID: 36037227 PMCID: PMC9427032 DOI: 10.1080/19491034.2022.2115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
4
|
Ban H, Sun W, Chen Y, Li F. Phase separation of Dri1 contributes to heterochromatin formation in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000559. [PMID: 35622527 PMCID: PMC9019594 DOI: 10.17912/micropub.biology.000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022]
Abstract
The RNA binding protein Dri1 facilitates heterochromatin assembly via the RNAi pathway and histone deacetylases (HDAC). Dri1 contains an intrinsically disordered region (IDR) and three zinc fingers at its C-terminus, which are important for its role in heterochromatin silencing. Both IDR and zinc fingers have been implicated in mediating liquid-liquid phase separation (LLPS). In this study, we investigated the phase separation properties of Dri1. We observed that Dri1 undergoes phase separation in vitro . Dri1 also exhibits liquid-like behavior in vivo . Combined with our previous findings, our data support a model in which the phase-separated condensates formed by Dri1 may help recruit RNAi components and HDAC to mediate heterochromatin assembly.
Collapse
Affiliation(s)
- Hyoju Ban
- Department of Biology, New York University, New York, NY 10003, USA
| | - Wenqi Sun
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
,
Correspondence to: Yong Chen (
)
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003, USA.
,
Correspondence to: Fei Li (
)
| |
Collapse
|
5
|
Ccp1-Ndc80 switch at the N terminus of CENP-T regulates kinetochore assembly. Proc Natl Acad Sci U S A 2021; 118:2104459118. [PMID: 34810257 PMCID: PMC8640933 DOI: 10.1073/pnas.2104459118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Precise chromosome segregation relies on kinetochores. How kinetochores are precisely assembled on centromeres through the cell cycle remains poorly understood. Centromeres in most eukaryotes are epigenetically marked by nucleosomes containing the histone H3 variant, CENP-A. Here, we demonstrated that Ccp1, an anti–CENP-A loading factor, interacts with the N terminus of CENP-T to promote the assembly of the outer kinetochore Ndc80 complex. This work further suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis. In addition, CENP-T is critical for Ccp1 centromeric localization, which in turn regulates CENP-A distribution. Our results reveal a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle. Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain–deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.
Collapse
|
6
|
Ban H, Sun W, Chen YH, Chen Y, Li F. Dri1 mediates heterochromatin assembly via RNAi and histone deacetylation. Genetics 2021; 218:6162161. [PMID: 33693625 DOI: 10.1093/genetics/iyab032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin, a transcriptionally silenced chromatin domain, is important for genome stability and gene expression. Histone 3 lysine 9 methylation (H3K9me) and histone hypoacetylation are conserved epigenetic hallmarks of heterochromatin. In fission yeast, RNA interference (RNAi) plays a key role in H3K9 methylation and heterochromatin silencing. However, how RNAi machinery and histone deacetylases (HDACs) are coordinated to ensure proper heterochromatin assembly is still unclear. Previously, we showed that Dpb4, a conserved DNA polymerase epsilon subunit, plays a key role in the recruitment of HDACs to heterochromatin during S phase. Here, we identified a novel RNA-binding protein Dri1 that interacts with Dpb4. GFP-tagged Dri1 forms distinct foci mostly in the nucleus, showing a high degree of colocalization with Swi6/Heterochromatin Protein 1. Deletion of dri1+ leads to defects in silencing, H3K9me, and heterochromatic siRNA generation. We also showed that Dri1 physically associates with heterochromatic transcripts, and is required for the recruitment of the RNA-induced transcriptional silencing (RITS) complex via interacting with the complex. Furthermore, loss of Dri1 decreases the association of the Sir2 HDAC with heterochromatin. We further demonstrated that the C-terminus of Dri1 that includes an intrinsically disordered (IDR) region and three zinc fingers is crucial for its role in silencing. Together, our evidences suggest that Dri1 facilitates heterochromatin assembly via the RNAi pathway and HDAC.
Collapse
Affiliation(s)
- Hyoju Ban
- Department of Biology, New York University, New York, NY 10003, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Hang Chen
- Institute of Genetics and Developmental Biology, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
7
|
Weigt M, Gao Q, Ban H, He H, Mastrobuoni G, Kempa S, Chen W, Li F. Rbm10 facilitates heterochromatin assembly via the Clr6 HDAC complex. Epigenetics Chromatin 2021; 14:8. [PMID: 33468217 PMCID: PMC7816512 DOI: 10.1186/s13072-021-00382-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/08/2021] [Indexed: 01/13/2023] Open
Abstract
Splicing factors have recently been shown to be involved in heterochromatin formation, but their role in controlling heterochromatin structure and function remains poorly understood. In this study, we identified a fission yeast homologue of human splicing factor RBM10, which has been linked to TARP syndrome. Overexpression of Rbm10 in fission yeast leads to strong global intron retention. Rbm10 also interacts with splicing factors in a pattern resembling that of human RBM10, suggesting that the function of Rbm10 as a splicing regulator is conserved. Surprisingly, our deep-sequencing data showed that deletion of Rbm10 caused only minor effect on genome-wide gene expression and splicing. However, the mutant displays severe heterochromatin defects. Further analyses indicated that the heterochromatin defects in the mutant did not result from mis-splicing of heterochromatin factors. Our proteomic data revealed that Rbm10 associates with the histone deacetylase Clr6 complex and chromatin remodelers known to be important for heterochromatin silencing. Deletion of Rbm10 results in significant reduction of Clr6 in heterochromatin. Our work together with previous findings further suggests that different splicing subunits may play distinct roles in heterochromatin regulation.
Collapse
Affiliation(s)
- Martina Weigt
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Haijin He
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Guido Mastrobuoni
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Wei Chen
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany. .,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China. .,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003-6688, USA.
| |
Collapse
|
8
|
Schizosaccharomyces pombe Assays to Study Mitotic Recombination Outcomes. Genes (Basel) 2020; 11:genes11010079. [PMID: 31936815 PMCID: PMC7016768 DOI: 10.3390/genes11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.
Collapse
|
9
|
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication.
Collapse
|
10
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
11
|
Abstract
Chromatin-associated proteins play critical roles in many cellular processes, including gene expression, epigenetic regulation, DNA repair, recombination, and replication. Especially, epigenetic landscape, shaped by a variety of chromatin-binding proteins, is dynamic and regulated in a context-dependent manner. In situ chromatin-binding assay is a powerful but simple tool to investigate how proteins, such as epigenetic components, associate with chromatin. This approach relies on the fact that chromatin bound proteins are more resistant to detergent extraction. Here, we describe a protocol for the in situ chromatin-binding assay used in Schizosaccaromyces pombe.
Collapse
|
12
|
Bhattacharjee S, Nandi S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 2017; 15:41. [PMID: 29017571 PMCID: PMC5635482 DOI: 10.1186/s12964-017-0195-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.
Collapse
|
13
|
Yang J, Li F. Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet 2016; 63:57-63. [PMID: 27260214 DOI: 10.1007/s00294-016-0619-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/24/2023]
Abstract
Repetitive DNA sequences, comprising up to 50 % of the genome in all eukaryotes, play important roles in a wide range of cellular functions, such as transcriptional regulation, genome stability, and cellular differentiation. However, due to technical difficulties in differentiating their sequences, DNA repeats remain one of the most mysterious parts of eukaryotic genomes. Key questions, such as how repetitive entities behave at individual level and how the internal architecture of these repeats is organized, are still poorly understood. Recent advances from our group reveal unexpected position-dependent variation within tandem DNA repeats in fission yeast. Despite sharing identical DNA sequences, the peri-centromeric repeats are organized into diverse epigenetic states and chromatin structures. We demonstrate that this position-dependent variation requires key heterochromatin factors and condensin. Our works further suggest that the peri-centromeric repeats are organized into distinct higher order structures that ensure a proper positioning of CENP-A, the centromere-specific histone H3 variant, to centromeres. These most recent developments offer insights into the mechanisms underlying the position effect within tandem DNA arrays, and have broad implications in the field of epigenetics and chromatin biology.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003, USA. .,1009 Silver Center, 100 Washington Square East, New York, NY, 10003-6688, USA.
| |
Collapse
|
14
|
Kanesaki Y, Imamura S, Matsuzaki M, Tanaka K. Identification of centromere regions in chromosomes of a unicellular red alga,Cyanidioschyzon merolae. FEBS Lett 2015; 589:1219-24. [DOI: 10.1016/j.febslet.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/20/2023]
|
15
|
Abstract
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.
Collapse
|