1
|
Dionne O, Corbin F. An "Omic" Overview of Fragile X Syndrome. BIOLOGY 2021; 10:433. [PMID: 34068266 PMCID: PMC8153138 DOI: 10.3390/biology10050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with a wide range of cognitive, behavioral and medical problems. It arises from the silencing of the fragile X mental retardation 1 (FMR1) gene and, consequently, in the absence of its encoded protein, FMRP (fragile X mental retardation protein). FMRP is a ubiquitously expressed and multifunctional RNA-binding protein, primarily considered as a translational regulator. Pre-clinical studies of the past two decades have therefore focused on this function to relate FMRP's absence to the molecular mechanisms underlying FXS physiopathology. Based on these data, successful pharmacological strategies were developed to rescue fragile X phenotype in animal models. Unfortunately, these results did not translate into humans as clinical trials using same therapeutic approaches did not reach the expected outcomes. These failures highlight the need to put into perspective the different functions of FMRP in order to get a more comprehensive understanding of FXS pathophysiology. This work presents a review of FMRP's involvement on noteworthy molecular mechanisms that may ultimately contribute to various biochemical alterations composing the fragile X phenotype.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC J1H 5H4, Canada;
| | | |
Collapse
|
2
|
Yang WJ, Yan AZ, Xu YJ, Guo XY, Fu XG, Li D, Liao J, Zhang D, Lan FH. Further identification of a 140bp sequence from amid intron 9 of human FMR1 gene as a new exon. BMC Genet 2020; 21:63. [PMID: 32552710 PMCID: PMC7301526 DOI: 10.1186/s12863-020-00870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
Background The disease gene of fragile X syndrome, FMR1 gene, encodes fragile X mental retardation protein (FMRP). The alternative splicing (AS) of FMR1 can affect the structure and function of FMRP. However, the biological functions of alternatively spliced isoforms remain elusive. In a previous study, we identified a new 140bp exon from the intron 9 of human FMR1 gene. In this study, we further examined the biological functions of this new exon and its underlying signaling pathways. Results qRT-PCR results showed that this novel exon is commonly expressed in the peripheral blood of normal individuals. Comparative genomics showed that sequences paralogous to the 140 bp sequence only exist in the genomes of primates. To explore the biological functions of the new transcript, we constructed recombinant eukaryotic expression vectors and lentiviral overexpression vectors. Results showed that the spliced transcript encoded a truncated protein which was expressed mainly in the cell nucleus. Additionally, several genes, including the BEX1 gene involved in mGluR-LTP or mGluR-LTD signaling pathways were significantly influenced when the truncated FMRP was overexpressed. Conclusions our work identified a new exon from amid intron 9 of human FMR1 gene with wide expression in normal healthy individuals, which emphasizes the notion that the AS of FMR1 gene is complex and may in a large part account for the multiple functions of FMRP.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ai-Zhen Yan
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Yong-Jun Xu
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Xiao-Yan Guo
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Fuzhou No. 2 Hospital Affiliated Xiamen University, Fuzhou, Fujian, 350007, People's Republic of China
| | - Xian-Guo Fu
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Ningde Municipal Hospital, Fujian Medical University, Ningde City, 352100, Fujian Province, China
| | - Dan Li
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Juan Liao
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Fujian University of Traditional Chinese Medicine Affiliated People's Hospital, Fuzhou, 350001, Fujian, China
| | - Duo Zhang
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Feng-Hua Lan
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.
| |
Collapse
|
3
|
Davis JK, Broadie K. Multifarious Functions of the Fragile X Mental Retardation Protein. Trends Genet 2017; 33:703-714. [PMID: 28826631 PMCID: PMC5610095 DOI: 10.1016/j.tig.2017.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence.
Collapse
Affiliation(s)
- Jenna K Davis
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
4
|
He Q, Ge W. The tandem Agenet domain of fragile X mental retardation protein interacts with FUS. Sci Rep 2017; 7:962. [PMID: 28424484 PMCID: PMC5430443 DOI: 10.1038/s41598-017-01175-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
The tandem Agenet domain (TAD) of fragile X mental retardation protein (FMRP) protein is considered to be a member of the methyl-lysine-binding Tudor domain “Royal family”. Several groups have reported that the TAD binds with methylated histones and plays a role in DNA damage responses. FMRP is a RNA-binding protein predominantly resident in cytoplasm. Therefore, in this study, we identified DDX5, FUS, EWSR1 and LSM14A as TAD-interacting proteins sensitive to F32L and/or Y96L mutation by pull-down assays and mass spectrometry. We also showed that the interaction is potentially mediated by RGG/RG motifs. Furthermore, when FMRP was knocked-down, translocation of exogenously expressed wild-type FUS and disease-related mutant R514G was observed. This study may provide a novel insight into FMRP involvement in the intracellular localization of FUS and pathology of FUS-related amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Qingzhong He
- National Key Laboratory of Medical Molecular Biology & Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|