1
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Le CT, Nguyen TD, Nguyen TA. Two-motif model illuminates DICER cleavage preferences. Nucleic Acids Res 2024; 52:1860-1877. [PMID: 38167721 PMCID: PMC10899750 DOI: 10.1093/nar/gkad1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
In humans, DICER is a key regulator of gene expression through its production of miRNAs and siRNAs by processing miRNA precursors (pre-miRNAs), short-hairpin RNAs (shRNAs), and long double-stranded RNAs (dsRNAs). To advance our understanding of this process, we employed high-throughput dicing assays using various shRNA variants and both wild-type and mutant DICER. Our analysis revealed that DICER predominantly cleaves shRNAs at two positions, specifically at 21 (DC21) and 22 (DC22) nucleotides from their 5'-end. Our investigation identified two different motifs, mWCU and YCR, that determine whether DICER cleaves at DC21 or DC22, depending on their locations in shRNAs/pre-miRNAs. These motifs can work together or independently to determine the cleavage sites of DICER. Furthermore, our findings indicate that dsRNA-binding domain (dsRBD) of DICER enhances its cleavage, and mWCU strengthens the interaction between dsRBD and RNA, leading to an even greater enhancement of the cleavage. Conversely, YCR functions independently of dsRBD. Our study proposes a two-motif model that sheds light on the intricate regulatory mechanisms involved in gene expression by elucidating how DICER recognizes its substrates, providing valuable insights into this critical biological process.
Collapse
Affiliation(s)
- Cong Truc Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Trung Duc Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| |
Collapse
|
4
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
5
|
Sequence determinant of small RNA production by DICER. Nature 2023; 615:323-330. [PMID: 36813957 DOI: 10.1038/s41586-023-05722-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
RNA silencing relies on specific and efficient processing of double-stranded RNA by Dicer, which yields microRNAs (miRNAs) and small interfering RNAs (siRNAs)1,2. However, our current knowledge of the specificity of Dicer is limited to the secondary structures of its substrates: a double-stranded RNA of approximately 22 base pairs with a 2-nucleotide 3' overhang and a terminal loop3-11. Here we found evidence pointing to an additional sequence-dependent determinant beyond these structural properties. To systematically interrogate the features of precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with pre-miRNA variants and human DICER (also known as DICER1). Our analyses revealed a deeply conserved cis-acting element, termed the 'GYM motif' (paired G, paired pyrimidine and mismatched C or A), near the cleavage site. The GYM motif promotes processing at a specific position and can override the previously identified 'ruler'-like counting mechanisms from the 5' and 3' ends of pre-miRNA3-6. Consistently, integrating this motif into short hairpin RNA or Dicer-substrate siRNA potentiates RNA interference. Furthermore, we find that the C-terminal double-stranded RNA-binding domain (dsRBD) of DICER recognizes the GYM motif. Alterations in the dsRBD reduce processing and change cleavage sites in a motif-dependent fashion, affecting the miRNA repertoire in cells. In particular, the cancer-associated R1855L substitution in the dsRBD strongly impairs GYM motif recognition. This study uncovers an ancient principle of substrate recognition by metazoan Dicer and implicates its potential in the design of RNA therapeutics.
Collapse
|
6
|
Structure of the human DICER-pre-miRNA complex in a dicing state. Nature 2023; 615:331-338. [PMID: 36813958 DOI: 10.1038/s41586-023-05723-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/14/2022] [Indexed: 02/24/2023]
Abstract
Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.
Collapse
|
7
|
Komatsu S, Kitai H, Suzuki HI. Network Regulation of microRNA Biogenesis and Target Interaction. Cells 2023; 12:306. [PMID: 36672241 PMCID: PMC9856966 DOI: 10.3390/cells12020306] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are versatile, post-transcriptional regulators of gene expression. Canonical miRNAs are generated through the two-step DROSHA- and DICER-mediated processing of primary miRNA (pri-miRNA) transcripts with optimal or suboptimal features for DROSHA and DICER cleavage and loading into Argonaute (AGO) proteins, whereas multiple hairpin-structured RNAs are encoded in the genome and could be a source of non-canonical miRNAs. Recent advances in miRNA biogenesis research have revealed details of the structural basis of miRNA processing and cluster assistance mechanisms that facilitate the processing of suboptimal hairpins encoded together with optimal hairpins in polycistronic pri-miRNAs. In addition, a deeper investigation of miRNA-target interaction has provided insights into the complexity of target recognition with distinct outcomes, including target-mediated miRNA degradation (TDMD) and cooperation in target regulation by multiple miRNAs. Therefore, the coordinated or network regulation of both miRNA biogenesis and miRNA-target interaction is prevalent in miRNA biology. Alongside recent advances in the mechanistic investigation of miRNA functions, this review summarizes recent findings regarding the ordered regulation of miRNA biogenesis and miRNA-target interaction.
Collapse
Affiliation(s)
- Shintaro Komatsu
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Ma S, Kotar A, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.519659. [PMID: 36711709 PMCID: PMC9881868 DOI: 10.1101/2023.01.03.519659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As an essential post-transcriptional regulator of gene expression, microRNA (miR) levels must be strictly maintained. The biogenesis of many, but not all, miRs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers and interestingly, its biogenesis is not known to be regulated by protein binding partners. Therefore, the intrinsic structural properties of pre-miR-31 can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of the precursor element of miR-31 (pre-miR-31) to investigate the role of distinct structural elements in regulating Dicer processing. We found that the presence or absence of mismatches within the helical stem do not strongly influence Dicer processing of the pre-miR. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by Dicer. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influence both Dicer binding and processing. Our results enrich our understanding of the active role that RNA structure plays in regulating Dicer processing which has direct implications for control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Scott Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Secondary structure RNA elements control the cleavage activity of DICER. Nat Commun 2022; 13:2138. [PMID: 35440644 PMCID: PMC9018771 DOI: 10.1038/s41467-022-29822-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/23/2022] [Indexed: 12/05/2022] Open
Abstract
The accurate and efficient cleavage of shRNAs and pre-miRNAs by DICER is crucial for their gene-silencing activity. Here, we conduct high-throughput DICER cleavage assays for more than ~20,000 different shRNAs and show the comprehensive cleavage activities of DICER on these sequences. We discover a single-nucleotide bulge (22-bulge), which facilitates the cleavage activity of DICER on shRNAs and human pre-miRNAs. As a result, this 22-bulge enhances the gene-silencing activity of shRNAs and the accuracy of miRNA biogenesis. In addition, various single-nucleotide polymorphism-edited 22-bulges are found to govern the cleavage sites of DICER on pre-miRNAs and thereby control their functions. Finally, we identify the single cleavage of DICER and reveal its molecular mechanism. Our findings improve the understanding of the DICER cleavage mechanism, provide a foundation for the design of accurate and efficient shRNAs for gene-silencing, and indicate the function of bulges in regulating miRNA biogenesis. MicroRNA precursors are cleaved by DICER to generate mature microRNAs in the cytoplasm. Here the authors employ high-throughput analysis of DICER cleavage activity and identify RNA secondary elements in precursor miRNAs and shRNAs, including a single nucleotide bulge, which govern its cleavage efficiency and accuracy.
Collapse
|
10
|
Marceca GP, Tomasello L, Distefano R, Acunzo M, Croce CM, Nigita G. Detecting and Characterizing A-To-I microRNA Editing in Cancer. Cancers (Basel) 2021; 13:1699. [PMID: 33916692 PMCID: PMC8038323 DOI: 10.3390/cancers13071699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Adenosine to inosine (A-to-I) editing consists of an RNA modification where single adenosines along the RNA sequence are converted into inosines. Such a biochemical transformation is catalyzed by enzymes belonging to the family of adenosine deaminases acting on RNA (ADARs) and occurs either co- or post-transcriptionally. The employment of powerful, high-throughput detection methods has recently revealed that A-to-I editing widely occurs in non-coding RNAs, including microRNAs (miRNAs). MiRNAs are a class of small regulatory non-coding RNAs (ncRNAs) acting as translation inhibitors, known to exert relevant roles in controlling cell cycle, proliferation, and cancer development. Indeed, a growing number of recent researches have evidenced the importance of miRNA editing in cancer biology by exploiting various detection and validation methods. Herein, we briefly overview early and currently available A-to-I miRNA editing detection and validation methods and discuss the significance of A-to-I miRNA editing in human cancer.
Collapse
Affiliation(s)
- Gioacchino P. Marceca
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (L.T.); (R.D.); (C.M.C.)
| |
Collapse
|
11
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
12
|
Wang Y, Li G, Deng M, Liu X, Huang W, Zhang Y, Liu M, Chen Y. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: From mechanisms to therapeutics. Pharmacol Ther 2020; 221:107783. [PMID: 33307143 DOI: 10.1016/j.pharmthera.2020.107783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia is a hallmark of cancer. Hypoxia-inducible factor (HIF), a master player for sensing and adapting to hypoxia, profoundly influences genome instability, tumor progression and metastasis, metabolic reprogramming, and resistance to chemotherapies and radiotherapies. High levels and activity of HIF result in poor clinical outcomes in cancer patients. Thus, HIFs provide ideal therapeutic targets for cancers. However, HIF biology is sophisticated, and currently available HIF inhibitors have limited clinical utility owing to their low efficacy or side effects. RNA helicases, which are master players in cellular RNA metabolism, are usually highly expressed in tumors to meet the increased oncoprotein biosynthesis demand. Intriguingly, recent findings provide convincing evidence that RNA helicases are crucial for the adaptive cellular response to hypoxia via a mutual regulation with HIFs. More importantly, some RNA helicase inhibitors may suppress HIF signaling by blocking the translation of HIF-responsive genes. Therefore, RNA helicase inhibitors may work synergistically with HIF inhibitors in cancer to improve treatment efficacy. In this review, we discuss current knowledge of how cells sense and adapt to hypoxia through HIFs. However, our primary focus is on the multiple functions of RNA helicases in the adaptive response to hypoxia. We also highlight how these hypoxia-related RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guangqiang Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Mingxia Deng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yan Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
13
|
Baisden JT, Boyer JA, Zhao B, Hammond SM, Zhang Q. Visualizing a protonated RNA state that modulates microRNA-21 maturation. Nat Chem Biol 2020; 17:80-88. [PMID: 33106660 DOI: 10.1038/s41589-020-00667-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/02/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
MicroRNAs are evolutionarily conserved small, noncoding RNAs that regulate diverse biological processes. Due to their essential regulatory roles, microRNA biogenesis is tightly regulated, where protein factors are often found to interact with specific primary and precursor microRNAs for regulation. Here, using NMR relaxation dispersion spectroscopy and mutagenesis, we reveal that the precursor of oncogenic microRNA-21 exists as a pH-dependent ensemble that spontaneously reshuffles the secondary structure of the entire apical stem-loop region, including the Dicer cleavage site. We show that the alternative excited conformation transiently sequesters the bulged adenine into a noncanonical protonated A+-G mismatch, conferring a substantial enhancement in Dicer processing over its ground conformational state. These results indicate that microRNA maturation efficiency may be encoded in the intrinsic dynamic ensemble of primary and precursor microRNAs, providing a potential means of regulating microRNA biogenesis in response to environmental and cellular stimuli.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua A Boyer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Hammond
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Meerson A. Leptin-Responsive MiR-4443 Is a Small Regulatory RNA Independent of the Canonic MicroRNA Biogenesis Pathway. Biomolecules 2020; 10:biom10020293. [PMID: 32069948 PMCID: PMC7072149 DOI: 10.3390/biom10020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
The human small RNA miR-4443 is functionally involved in several types of cancer and in the biology of the immune system, downstream of insulin and leptin signaling. Next generation sequencing evidence and structural prediction suggest that miR-4443 is not produced via the canonical Drosha–Exportin 5–Dicer pathway of microRNA biogenesis. We tested this hypothesis by using qRT-PCR to measure miR-4443 and other microRNA levels in HCT-116 cells with Drosha, Exportin 5, and Dicer knockouts, as well as in the parental cell line. Neither of the knockouts decreased miR-4443 levels, while the levels of canonical microRNAs (miR-21 and let-7f-5p) were dramatically reduced. Previously published Ago2-RIP-Seq data suggest a limited incorporation of miR-4443 into RISC, in agreement with the functional studies. The miR-4443 locus shows conservation in primates but not in other mammals, while its seed region appears in additional microRNAs. Our results suggest that miR-4443 is a Drosha, Exportin 5, and Dicer-independent, non-canonical small RNA produced by a yet unknown biogenesis pathway.
Collapse
Affiliation(s)
- Ari Meerson
- MIGAL—Galilee Research Institute, POB 831, Kiryat Shmona 1101602, Israel; ; Tel.: +972-4-695-5022
- Faculty of Sciences, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| |
Collapse
|
15
|
Abstract
Noncoding RNAs (ncRNAs) have received much attention due to their central role in gene expression and translational regulation as well as due to their involvement in several biological processes and disease development. Small noncoding RNAs (sncRNAs), such as microRNAs and piwiRNAs, have been thoroughly investigated and functionally characterized. Long noncoding RNAs (lncRNAs), known to play an important role in chromatin-interacting transcription regulation, posttranscriptional regulation, cell-to-cell signaling, and protein regulation, are also being investigated to further elucidate their functional roles.Next-generation sequencing (NGS) technologies have greatly aided in characterizing the ncRNAome. Moreover, the coupling of NGS technology together with bioinformatics tools has been essential to the genome-wide detection of RNA modifications in ncRNAs. RNA editing, a common human co-transcriptional and posttranscriptional modification, is a dynamic biological phenomenon able to alter the sequence and the structure of primary transcripts (both coding and noncoding RNAs) during the maturation process, consequently influencing the biogenesis, as well as the function, of ncRNAs. In particular, the dysregulation of the RNA editing machineries have been associated with the onset of human diseases.In this chapter we discuss the potential functions of ncRNA editing and describe the knowledge base and bioinformatics resources available to investigate such phenomenon.
Collapse
|
16
|
Bouvette J, Korkut DN, Fouillen A, Amellah S, Nanci A, Durocher Y, Omichinski JG, Legault P. High-yield production of human Dicer by transfection of human HEK293-EBNA1 cells grown in suspension. BMC Biotechnol 2018; 18:76. [PMID: 30522464 PMCID: PMC6282390 DOI: 10.1186/s12896-018-0485-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure. Results Transfection conditions were first optimized to achieve expression levels between 10 and 18 mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4–9 mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5 nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2 ± 0.5 min− 1) and KM (1.2 ± 0.3 μM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption. Conclusions The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway. Electronic supplementary material The online version of this article (10.1186/s12896-018-0485-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Bouvette
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Dursun Nizam Korkut
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Aurélien Fouillen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Soumiya Amellah
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Antonio Nanci
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Yves Durocher
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - James G Omichinski
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.
| |
Collapse
|
17
|
Mickiewicz A, Sarzyńska J, Miłostan M, Kurzyńska-Kokorniak A, Rybarczyk A, Łukasiak P, Kuliński T, Figlerowicz M, Błażewicz J. Modeling of the catalytic core of Arabidopsis thaliana Dicer-like 4 protein and its complex with double-stranded RNA. Comput Biol Chem 2016; 66:44-56. [PMID: 27907832 DOI: 10.1016/j.compbiolchem.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Plant Dicer-like proteins (DCLs) belong to the Ribonuclease III (RNase III) enzyme family. They are involved in the regulation of gene expression and antiviral defense through RNA interference pathways. A model plant, Arabidopsis thaliana encodes four DCL proteins (AtDCL1-4) that produce different classes of small regulatory RNAs. Our studies focus on AtDCL4 that processes double-stranded RNAs (dsRNAs) into 21 nucleotide trans-acting small interfering RNAs. So far, little is known about the structures of plant DCLs and the complexes they form with dsRNA. In this work, we present models of the catalytic core of AtDCL4 and AtDCL4-dsRNA complex constructed by computational methods. We built a homology model of the catalytic core of AtDCL4 comprising Platform, PAZ, Connector helix and two RNase III domains. To assemble the AtDCL4-dsRNA complex two modeling approaches were used. In the first method, to establish conformations that allow building a consistent model of the complex, we used Normal Mode Analysis for both dsRNA and AtDCL4. The second strategy involved template-based approach for positioning of the PAZ domain and manual arrangement of the Connector helix. Our results suggest that the spatial orientation of the Connector helix, Platform and PAZ relative to the RNase III domains is crucial for measuring dsRNA of defined length. The modeled complexes provide information about interactions that may contribute to the relative orientations of these domains and to dsRNA binding. All these information can be helpful for understanding the mechanism of AtDCL4-mediated dsRNA recognition and binding, to produce small RNA of specific size.
Collapse
Affiliation(s)
- Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland.
| | - Maciej Miłostan
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Anna Kurzyńska-Kokorniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Agnieszka Rybarczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Piotr Łukasiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Tadeusz Kuliński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Jacek Błażewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| |
Collapse
|
18
|
Rutledge H, Baran-Gale J, de Villena FPM, Chesler EJ, Churchill GA, Sethupathy P, Kelada SNP. Identification of microRNAs associated with allergic airway disease using a genetically diverse mouse population. BMC Genomics 2015; 16:633. [PMID: 26303911 PMCID: PMC4548451 DOI: 10.1186/s12864-015-1732-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Background Allergic airway diseases (AADs) such as asthma are characterized in part by granulocytic airway inflammation. The gene regulatory networks that govern granulocyte recruitment are poorly understood, but evidence is accruing that microRNAs (miRNAs) play an important role. To identify miRNAs that may underlie AADs, we used two complementary approaches that leveraged the genotypic and phenotypic diversity of the Collaborative Cross (CC) mouse population. In the first approach, we sought to identify miRNA expression quantitative trait loci (eQTL) that overlap QTL for AAD-related phenotypes. Specifically, CC founder strains and incipient lines of the CC were sensitized and challenged with house dust mite allergen followed by measurement of granulocyte recruitment to the lung. Total lung RNA was isolated and miRNA was measured using arrays for CC founders and qRT-PCR for incipient CC lines. Results Among CC founders, 92 miRNAs were differentially expressed. We measured the expression of 40 of the most highly expressed of these 92 miRNAs in the incipient lines of the CC and identified 18 eQTL corresponding to 14 different miRNAs. Surprisingly, half of these eQTL were distal to the corresponding miRNAs, and even on different chromosomes. One of the largest-effect local miRNA eQTL was for miR-342-3p, for which we identified putative causal variants by bioinformatic analysis of the effects of single nucleotide polymorphisms on RNA structure. None of the miRNA eQTL co-localized with QTL for eosinophil or neutrophil recruitment. In the second approach, we constructed putative miRNA/mRNA regulatory networks and identified three miRNAs (miR-497, miR-351 and miR-31) as candidate master regulators of genes associated with neutrophil recruitment. Analysis of a dataset from human keratinocytes transfected with a miR-31 inhibitor revealed two target genes in common with miR-31 targets correlated with neutrophils, namely Oxsr1 and Nsf. Conclusions miRNA expression in the allergically inflamed murine lung is regulated by genetic loci that are smaller in effect size compared to mRNA eQTL and often act in trans. Thus our results indicate that the genetic architecture of miRNA expression is different from mRNA expression. We identified three miRNAs, miR-497, miR-351 and miR-31, that are candidate master regulators of genes associated with neutrophil recruitment. Because miR-31 is expressed in airway epithelia and is predicted to target genes with known links to neutrophilic inflammation, we suggest that miR-31 is a potentially novel regulator of airway inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1732-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holly Rutledge
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Jeanette Baran-Gale
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | - Praveen Sethupathy
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 2015; 43:4365-80. [PMID: 25883138 PMCID: PMC4482082 DOI: 10.1093/nar/gkv328] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/31/2015] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence indicating that the production of small regulatory RNAs is not the only process in which ribonuclease Dicer can participate. For example, it has been demonstrated that this enzyme is also involved in chromatin structure remodelling, inflammation and apoptotic DNA degradation. Moreover, it has become increasingly clear that cellular transcript and protein levels of Dicer must be strictly controlled because even small changes in their accumulation can initiate various pathological processes, including carcinogenesis. Accordingly, in recent years, a number of studies have been performed to identify the factors regulating Dicer gene expression and protein activity. As a result, a large amount of complex and often contradictory data has been generated. None of these data have been subjected to an exhaustive review or critical discussion. This review attempts to fill this gap by summarizing the current knowledge of factors that regulate Dicer gene transcription, primary transcript processing, mRNA translation and enzyme activity. Because of the high complexity of this topic, this review mainly concentrates on human Dicer. This review also focuses on an additional regulatory layer of Dicer activity involving the interactions of protein and RNA factors with Dicer substrates.
Collapse
Affiliation(s)
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Maria Pokornowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland Institute of Computing Science, Poznan University of Technology, Poznan 60-965, Poland
| |
Collapse
|