1
|
Iqbal S, Islam MZ, Ashraf S, Kim W, AL-Sharabi AA, Ozcan M, Hanashalshahaby E, Zhang C, Uhlén M, Boren J, Turkez H, Mardinoglu A. Discovery of Cell-Permeable Allosteric Inhibitors of Liver Pyruvate Kinase: Design and Synthesis of Sulfone-Based Urolithins. Int J Mol Sci 2024; 25:7986. [PMID: 39063228 PMCID: PMC11277446 DOI: 10.3390/ijms25147986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) presents a significant global health challenge, characterized by the accumulation of liver fat and impacting a considerable portion of the worldwide population. Despite its widespread occurrence, effective treatments for MAFLD are limited. The liver-specific isoform of pyruvate kinase (PKL) has been identified as a promising target for developing MAFLD therapies. Urolithin C, an allosteric inhibitor of PKL, has shown potential in preliminary studies. Expanding upon this groundwork, our study delved into delineating the structure-activity relationship of urolithin C via the synthesis of sulfone-based urolithin analogs. Our results highlight that incorporating a sulfone moiety leads to substantial PKL inhibition, with additional catechol moieties further enhancing this effect. Despite modest improvements in liver cell lines, there was a significant increase in inhibition observed in HepG2 cell lysates. Specifically, compounds 15d, 9d, 15e, 18a, 12d, and 15a displayed promising IC50 values ranging from 4.3 µM to 18.7 µM. Notably, compound 15e not only demonstrated a decrease in PKL activity and triacylglycerol (TAG) content but also showed efficient cellular uptake. These findings position compound 15e as a promising candidate for pharmacological MAFLD treatment, warranting further research and studies.
Collapse
Affiliation(s)
- Shazia Iqbal
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Md. Zahidul Islam
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Sajda Ashraf
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Amal A. AL-Sharabi
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Türkiye
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Türkiye;
| | - Essam Hanashalshahaby
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Türkiye;
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Jin S, Lin C, Wang Y, Wang H, Wen X, Xiao P, Li X, Peng Y, Sun J, Lu Y, Wang X. Cannabidiol Analogue CIAC001 for the Treatment of Morphine-Induced Addiction by Targeting PKM2. J Med Chem 2023; 66:11498-11516. [PMID: 37531582 DOI: 10.1021/acs.jmedchem.3c01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Opioid addiction is a chronically relapsing disorder that causes critical public health problems. Currently, there is a lack of effective drug treatment. Herein, one cannabidiol derivative, CIAC001, was discovered as an effective agent for treating morphine-induced addiction. In vitro, CIAC001 exhibited significantly improved anti-neuroinflammatory activity with lower toxicity. In vivo, CIAC001 ameliorated the morphine-induced withdrawal reaction, behavioral sensitization, and conditional position preference by inhibiting morphine-induced microglia activation and neuroinflammation. Target fishing for CIAC001 by activity-based protein profiling led to the identification of pyruvate kinase M2 (PKM2) as the target protein. CIAC001 bound to the protein-protein interface of the PKM2 dimer and promoted the tetramerization of PKM2. Moreover, CIAC001 exhibited an anti-neuroinflammatory effect by reversing the decrease of the PKM2 tetramer and inhibiting the nuclear translocation of PKM2. In summary, this study identified CIAC001 as a lead compound in targeting PKM2 to treat morphine-induced addiction.
Collapse
Affiliation(s)
- Sha Jin
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaodong Li
- Beijing Changping Huayou Hospital, Beijing 102299, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuyuan Lu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Li Y, Ma Q, Shi X, Yuan W, Liu G, Wang C. Comparative Transcriptome Analysis of Slow-Twitch and Fast-Twitch Muscles in Dezhou Donkeys. Genes (Basel) 2022; 13:1610. [PMID: 36140778 PMCID: PMC9498731 DOI: 10.3390/genes13091610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The skeletal muscle fiber profile is closely related to livestock meat quality. However, the molecular mechanisms determining muscle fiber types in donkeys are not completely understood. In this study, we selected the psoas major muscle (PM; mainly composed of oxidative-type muscle fibers) and biceps femoris muscle (BF; mainly composed of glycolytic-type muscle fibers) and systematically compared their mRNA and microRNA transcriptomes via RNA-seq. We identified a total of 2881 differentially expressed genes (DEGs) and 21 known differentially expressed miRNAs (DEmiRs). Furthermore, functional enrichment analysis showed that the DEGs were mainly involved in energy metabolism and actin cytoskeleton regulation. The glycolysis/gluconeogenesis pathway (including up-regulated genes such as PKM, LDHA, PGK1 and ALDOA) was more highly enriched in BF, whereas the oxidative phosphorylation pathway and cardiac muscle contraction (including down-regulated genes such as LDHB, ATP2A2, myosin-7 (MYH7), TNNC1, TPM3 and TNNI1) was more enriched in PM. Additionally, we identified several candidate miRNA-mRNA pairs that might regulate muscle fiber types using the integrated miRNA-mRNA analysis. Combined with the results of protein-protein interaction (PPI) analysis, some interesting DEGs (including ACTN3, TNNT3, TPM2, TNNC2, PKM, TNNC1 and TNNI1) might be potential candidate target genes involved in the miRNA-mediated regulation of the myofibril composition. This study is the first to indicate that DEmiRs, especially eca-miR-193a-5p and eca-miR-370, and potential candidate target genes that are mainly involved in actin binding (e.g., ACTN3, TNNT3 and TNNC1) and the glycolysis/gluconeogenesis pathways (e.g., PKM) might coregulate the myofibril composition in donkeys. This study may provide useful information for improving meat quality traits in Dezhou donkeys.
Collapse
Affiliation(s)
- Yan Li
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Xiaoyuan Shi
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Wenmin Yuan
- Marine Biomedical Research Institute of Qingdao, Qingdao 266000, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Study on the changes of goat meat quality and the expression of 17 quality-related genes within 48 h of postmortem aging. Food Res Int 2022; 158:111506. [DOI: 10.1016/j.foodres.2022.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
|
5
|
Patel S, Globisch C, Pulugu P, Kumar P, Jain A, Shard A. Novel imidazopyrimidines-based molecules induce tetramerization of tumor pyruvate kinase M2 and exhibit potent antiproliferative profile. Eur J Pharm Sci 2021; 170:106112. [PMID: 34971746 DOI: 10.1016/j.ejps.2021.106112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/15/2021] [Accepted: 12/26/2021] [Indexed: 12/22/2022]
Abstract
Discovery of novel and potent lead molecules for the specific therapeutic targets by de novo drug design is still in infancy. Here, we disclose the unprecedented development of imidazopyri(mi)dine-based tumor pyruvate kinase M2 (PKM2) modulators by subsequent link and grow strategy. The most potent modulator 15n acts as a PKM2 activator with an AC50 of 90 nM, with considerable cancer cell-selectivity and membrane-permeability. NMR metabolomics studies also revealed that treatment with 15n results in diminution in lactate concentrations in MCF-7 cells. 15n binds to a previously reported site at PKM2 adjacent to the interface of two monomers. In molecular dynamics (MD) simulation studies, it was observed that 15n stabilizes the PKM2 at the dimeric interface, assisting in the formation of a biologically active tetramer conformation. 15n was also screened on MCF-7 breast cancer cell lines grown on 3-D scaffolds, and the results exhibited better anticancer potential compared to control, paving the way for future clinical studies.
Collapse
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj-Basan Road, Gandhinagar, 382355, Gujarat, India
| | | | - Priyanka Pulugu
- Department of Medical Devices National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj-Basan Road, Gandhinagar, 382355, Gujarat, India
| | - Prasoon Kumar
- Department of Medical Devices National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj-Basan Road, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj-Basan Road, Gandhinagar, 382355, Gujarat, India; Department of Bioengineering, BIT Mesra, Ranchi, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj-Basan Road, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
6
|
Harland A, Liu X, Ghirardello M, Galan MC, Perks CM, Kurian KM. Glioma Stem-Like Cells and Metabolism: Potential for Novel Therapeutic Strategies. Front Oncol 2021; 11:743814. [PMID: 34532295 PMCID: PMC8438230 DOI: 10.3389/fonc.2021.743814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem-like cells (GSCs) were first described as a population which may in part be resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth. Knowledge of the underlying metabolic complexity governing GSC growth and function may point to potential differences between GSCs and the tumour bulk which could be harnessed clinically. There is an increasing interest in the direct/indirect targeting or reprogramming of GSC metabolism as a potential novel therapeutic approach in the adjuvant or recurrent setting to help overcome resistance which may be mediated by GSCs. In this review we will discuss stem-like models, interaction between metabolism and GSCs, and potential current and future strategies for overcoming GSC resistance.
Collapse
Affiliation(s)
- Abigail Harland
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mattia Ghirardello
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - M Carmen Galan
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Zou J, Huang R, Chen Y, Huang X, Li H, Liang P, Chen S. Dihydropyrimidinase Like 2 Promotes Bladder Cancer Progression via Pyruvate Kinase M2-Induced Aerobic Glycolysis and Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2021; 9:641432. [PMID: 34295887 PMCID: PMC8291048 DOI: 10.3389/fcell.2021.641432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/06/2021] [Indexed: 01/06/2023] Open
Abstract
Background Aerobic glycolysis and epidermal–mesenchymal transition (EMT) play key roles in the development of bladder cancer. This study aimed to investigate the function and the underlying mechanism of dihydropyrimidinase like 2 (DPYSL2) in bladder cancer progression. Methods The expression pattern of DPYSL2 in bladder cancer and the correlation of DPYSL2 expression with clinicopathological characteristics of bladder cancer patients were analyzed using the data from different databases and tissue microarray. Gain- and loss-of-function assays were performed to explore the role of DPYSL2 in bladder cancer progression in vitro and in mice. Proteomic analysis was performed to identify the interacting partner of DPYSL2 in bladder cancer cells. Findings The results showed that DPYSL2 expression was upregulated in bladder cancer tissue compared with adjacent normal bladder tissue and in more aggressive cancer stages compared with lower stages. DPYSL2 promoted malignant behavior of bladder cancer cells in vitro, as well as tumor growth and distant metastasis in mice. Mechanistically, DPYSL2 interacted with pyruvate kinase M2 (PKM2) and promoted the conversion of PKM2 tetramers to PKM2 dimers. Knockdown of PKM2 completely blocked DPYSL2-induced enhancement of the malignant behavior, glucose uptake, lactic acid production, and epithelial–mesenchymal transition in bladder cancer cells. Interpretation In conclusion, the results suggest that DPYSL2 promotes aerobic glycolysis and EMT in bladder cancer via PKM2, serving as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Jun Zou
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiyan Huang
- State Key Laboratory of Oncology in South China, Department of Ultrasonography and Electrocardiograms, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanfei Chen
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Huang
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajun Li
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Liang
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Chen
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chiu CF, Weng JR, Lee SL, Wu CY, Chu PC, Shan YS, Yang HR, Bai LY. OSU-A9 induced-reactive oxygen species cause cytotoxicity in duodenal and gastric cancer cells by decreasing phosphorylated nuclear pyruvate kinase M2 protein levels. Biochem Pharmacol 2020; 174:113811. [DOI: 10.1016/j.bcp.2020.113811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
|
9
|
Tyrosine pre-transfer RNA fragments are linked to p53-dependent neuronal cell death via PKM2. Biochem Biophys Res Commun 2020; 525:726-732. [PMID: 32143824 DOI: 10.1016/j.bbrc.2020.02.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
Abstract
Fragments of transfer RNA (tRNA), derived either from pre-tRNA or mature tRNA, have been discovered to play an essential role in the pathogenesis of various disorders such as neurodegenerative disease. CLP1 is an RNA kinase involved in tRNA biogenesis, and mutations in its encoding gene are responsible for pontocerebellar hypoplasia type-10. Mutation of the CLP1 gene results in the accumulation of tRNA fragments of several different kinds. These tRNA fragments are expected to be associated with the disease pathogenesis. However, it is still unclear which of the tRNA fragments arising from the CLP1 gene mutation has the greatest impact on the onset of neuronal disease. We found that 5' tRNA fragments derived from tyrosine pre-tRNA (5' Tyr-tRF) caused p53-dependent neuronal cell death predominantly more than other types of tRNA fragment. We also showed that 5' Tyr-tRF bound directly to pyruvate kinase M2 (PKM2). Injection of zebrafish embryos with PKM2 mRNA ameliorated the neuronal defects induced in zebrafish embryos by 5' Tyr-tRF. Our findings partially uncovered a mechanistic link between 5' Tyr-tRF and neuronal cell death that is regulated by PKM2.
Collapse
|
10
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
11
|
Kumar S, Patel AK. Purification and Characterization of Prolyl Hydroxylase 3/Pyruvate Kinase Isoform 2 Protein Complex. Mol Biotechnol 2019; 62:111-118. [PMID: 31760602 DOI: 10.1007/s12033-019-00228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The prolyl hydroxylase 3 (PHD3) protein is less abundant in normal oxygen conditions (normoxia) but increases under deficient oxygen condition (hypoxia). Since cancerous cells often thrive in hypoxic conditions and predominantly express the Pyruvate kinase isoforms 2 (PKM2), the PHD3/PKM2 interaction might be particularly important in cancer development. In the present study, the PHD3/PKM2 complex was co-expressed and purified by size-exclusion chromatography. The interaction of PHD3 with PKM2 was confirmed in Native gel as well as western blot analysis. The PHD3/PKM2 complex formed discreet crystals under suitable conditions, and diffraction data revealed that crystal belonged to the P1 space group with 3.0 Å resolution. This is the first crystal report of PHD3/PKM2 complex as well as this study demonstrates a direct physical binding through protein-protein interaction. The structural analysis of complex will provide the information regarding the amino acid residues critical for the catalytic mechanism. Based on the structural information thus obtained, pharmacological interference with the PHD3/PKM2 interaction could be used as a novel strategy to reduce the cancer progression.
Collapse
Affiliation(s)
- Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
12
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9:52. [PMID: 31391918 PMCID: PMC6595688 DOI: 10.1186/s13578-019-0317-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase (PK), as one of the key enzymes for glycolysis, can encode four different subtypes from two groups of genes, although the M2 subtype PKM2 is expressed mainly during embryonic development in normal humans, and is closely related to tissue repair and regeneration, with the deepening of research, the role of PKM2 in tumor tissue has received increasing attention. PKM2 can be aggregated into tetrameric and dimeric forms, PKM2 in the dimer state can enter the nuclear to regulate gene expression, the transformation between them can play an important role in tumor cell energy supply, epithelial-mesenchymal transition (EMT), invasion and metastasis and cell proliferation. We will use the switching effect of PKM2 in glucose metabolism as the entry point to expand and enrich the Warburg effect. In addition, PKM2 can also regulate each other with various proteins by phosphorylation, acetylation and other modifications, mediate the different intracellular localization of PKM2 and then exert specific biological functions. In this paper, we will illustrate each of these points.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
13
|
Verma K, Patel A. Pyruvate Kinase M2 serves as blockade for nucleosome repositioning and abrogates Chd7 remodeling activity. PLoS One 2019; 14:e0211515. [PMID: 30735509 PMCID: PMC6368300 DOI: 10.1371/journal.pone.0211515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
Pyruvate Kinase M2 (PKM2) mediates metabolic reshuffling and is ubiquitously upregulated in several cancer types. The non-metabolic function of PKM2 as key nuclear kinase and modulator of gene expression is instrumental in cancer progression and tumorigenesis. Here, we attempt to discern the non-canonical function of PKM2 as an epigenetic modulator and the underlying implication of this activity. Using 5'-FAM labelled reconstituted mononucleosome we have shown that PKM2 interacts with the complex through Histone H3 and possibly obstruct the access to DNA binding factors. Subsequently, the interaction negatively impacts the ATP dependent remodeling activity of Chromodomain Helicase DNA binding protein-7 (Chd7). Chd7 remodeling activity is required to ameliorate DNA damage and is crucial to genome stability. Our study shows that PKM2 blocks the Chd7 mediated sliding of nucleosome. It can be conjectured that stalling Chd7 may lead to impaired DNA damage and increased genomic instability. We propose a mechanism in which PKM2 negatively regulate nucleosome repositioning in chromatin and may exacerbate cancer by altering the nucleosome architecture. This research is imperative to our understanding of how altered cancer metabolism can potentially modulate the gene expression and sustain incessant proliferation by tweaking the chromatin topography.
Collapse
Affiliation(s)
- Kirtika Verma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Ashok Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| |
Collapse
|
14
|
Ouyang H, Zhang H, Li W, Liang S, Jebessa E, Abdalla BA, Nie Q. Identification, expression and variation of the GNPDA2 gene, and its association with body weight and fatness traits in chicken. PeerJ 2016; 4:e2129. [PMID: 27326383 PMCID: PMC4911950 DOI: 10.7717/peerj.2129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Background. The GNPDA2 (glucosamine-6-phosphate deaminase 2) gene is a member of Glucosamine-6-phosphate (GlcN6P) deaminase subfamily, which encoded an allosteric enzyme of GlcN6P. Genome-wide association studies (GWAS) have shown that variations of human GNPDA2 are associated with body mass index and obesity risk, but its function and metabolic implications remain to be elucidated.The object of this study was to characterize the gene structure, expression, and biological functions of GNPDA2 in chickens. Methods. Variant transcripts of chicken GNPDA2 and their expression were investigated using rapid amplification of cDNA ends (RACE) system and real-time quantitative PCR technology. We detected the GNPDA2 expression in hypothalamic, adipose, and liver tissue of Xinghua chickens with fasting and high-glucose-fat diet treatments, and performed association analysis of variations of GNPDA2 with productive traits in chicken. The function of GNPDA2 was further studied by overexpression and small interfering RNA (siRNA) methods in chicken preadipocytes. Results.Four chicken GNPDA2 transcripts (cGNPDA2-a∼cGNPDA2-d) were identified in this study. The complete transcript GNPDA2-a was predominantly expressed in adipose tissue (subcutaneous fat and abdominal fat), hypothalamus, and duodenum. In fasting chickens, the mRNA level of GNPDA2 was decreased by 58.8% (P < 0.05) in hypothalamus, and returned to normal level after refeeding. Chicken fed a high-glucose-fat diet increased GNPDA2 gene expression about 2-fold higher in adipose tissue (P < 0.05) than that in the control (fed a basal diet), but decreased its expression in hypothalamus. Two single-nucleotide polymorphisms of the GNPDA2 gene were significantly associated with body weight and a number of fatness traits in chicken (P < 0.05). Conclusion. Our findings indicated that the GNPDA2 gene has a potential role in the regulation of body weight, fat and energy metabolism in chickens.
Collapse
Affiliation(s)
- Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Huan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Weimin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Sisi Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Bahareldin A Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| |
Collapse
|