1
|
Chen CS, Hung KS, Jian MJ, Chung HY, Chang CK, Perng CL, Chen HC, Chang FY, Wang CH, Hung YJ, Shang HS. Host-Pathogen Interactions in K. pneumoniae Urinary Tract Infections: Investigating Genetic Risk Factors in the Taiwanese Population. Diagnostics (Basel) 2024; 14:415. [PMID: 38396454 PMCID: PMC10888217 DOI: 10.3390/diagnostics14040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae (K. pneumoniae) urinary tract infections pose a significant challenge in Taiwan. The significance of this issue arises because of the growing concerns about the antibiotic resistance of K. pneumoniae. Therefore, this study aimed to uncover potential genomic risk factors in Taiwanese patients with K. pneumoniae urinary tract infections through genome-wide association studies (GWAS). METHODS Genotyping data are obtained from participants with a history of urinary tract infections enrolled at the Tri-Service General Hospital as part of the Taiwan Precision Medicine Initiative (TPMI). A case-control study employing GWAS is designed to detect potential susceptibility single-nucleotide polymorphisms (SNPs) in patients with K. pneumoniae-related urinary tract infections. The associated genes are determined using a genome browser, and their expression profiles are validated via the GTEx database. The GO, Reactome, DisGeNET, and MalaCards databases are also consulted to determine further connections between biological functions, molecular pathways, and associated diseases between these genes. RESULTS The results identified 11 genetic variants with higher odds ratios compared to controls. These variants are implicated in processes such as adhesion, protein depolymerization, Ca2+-activated potassium channels, SUMOylation, and protein ubiquitination, which could potentially influence the host immune response. CONCLUSIONS This study implies that certain risk variants may be linked to K. pneumoniae infections by affecting diverse molecular functions that can potentially impact host immunity. Additional research and follow-up studies are necessary to elucidate the influence of these risk variants on infectious diseases and develop targeted interventions for mitigating the spread of K. pneumoniae urinary tract infections.
Collapse
Affiliation(s)
- Chi-Sheng Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan (H.-Y.C.)
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan (H.-Y.C.)
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan (H.-Y.C.)
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan (H.-Y.C.)
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan (H.-Y.C.)
| | - Hsiang-Cheng Chen
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan (H.-Y.C.)
| |
Collapse
|
2
|
Zhang T, Li J, Sun Z, Tu B, Wang W, Luo G, He Y, Jiang S, Fan C. Human osteoprogenitor cells obtained from traumatic heterotopic ossification samples showed enhanced osteogenic differentiation potential and ERK/Hedgehog signaling than that from normal bone. IUBMB Life 2022; 74:1081-1093. [PMID: 35964153 DOI: 10.1002/iub.2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022]
Abstract
Traumatic heterotopic ossification (HO) refers to the abnormal ectopic osteogenesis following trauma, causing limb dysfunction and seriously lowering the life quality of patients. Aberrant osteogenic behavior of progenitor cells that ectopically accumulated within the soft tissues are believed to be responsible for HO formation. However, the detailed mechanism still remained to be clarified. Here in this study, we successfully isolated osteoprogenitors from human heterotopic ossification tissues (HO-ops) and identified their stemness and multi-directional differentiation potential. Using alkaline phosphatase staining together with alizarin red staining, we confirmed that the HO-ops in the heterotopic ossified tissues gained greater osteogenic potential than the normal human bone marrow mesenchymal stem cells (HBMSCs). RT-qPCR also indicated that HO-ops obtained more gene transcriptions of critical osteogenic determinators than HBMSCs. In addition, through Western blot, we proved that ERK signaling pathway and Hedgehog signaling pathway were significantly activated in the HO-ops. When U0126 and cyclopamine were used to inhibit ERK and hedgehog signaling respectively, the osteogenic potential of HO-ops decreased significantly. The hedgehog signaling and ERK signaling also showed cross-talk in HO-ops during osteogenic differentiation in HO-ops during osteogenic differentiation. The elevated ERK and hedgehog signaling was further confirmed in the human traumatic HO sample sections by immunohistochemical staining. In sum, our results showed that the activation of ERK and Hedgehog signaling pathway jointly enhanced the osteogenic potential of HO-ops to induce the formation of traumatic HO, which provides novel insights into the molecular basis of HO formation and offers promising targets for future therapeutic strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tongtong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyang Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing Tu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Gang Luo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yunwei He
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shichao Jiang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cunyi Fan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
3
|
Li X, Zhang Y, Zhou X, Hu X, Zhou Y, Liu D, Maxwell A, Mi K. The plasmid-borne quinolone resistance protein QnrB, a novel DnaA-binding protein, increases the bacterial mutation rate by triggering DNA replication stress. Mol Microbiol 2019; 111:1529-1543. [PMID: 30838726 PMCID: PMC6617969 DOI: 10.1111/mmi.14235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 02/02/2023]
Abstract
Bacterial antibiotic resistance, a global health threat, is caused by plasmid transfer or genetic mutations. Quinolones are important antibiotics, partially because they are fully synthetic and resistance genes are unlikely to exist in nature; nonetheless, quinolone resistance proteins have been identified. The mechanism by which plasmid-borne quinolone resistance proteins promotes the selection of quinolone-resistant mutants is unclear. Here, we show that QnrB increases the bacterial mutation rate. Transcriptomic and genome sequencing analyses showed that QnrB promoted gene abundance near the origin of replication (oriC). In addition, the QnrB expression level correlated with the replication origin to terminus (oriC/ter) ratio, indicating QnrB-induced DNA replication stress. Our results also show that QnrB is a DnaA-binding protein that may act as an activator of DNA replication initiation. Interaction of QnrB with DnaA promoted the formation of the DnaA-oriC open complex, which leads to DNA replication over-initiation. Our data indicate that plasmid-borne QnrB increases bacterial mutation rates and that genetic changes can alleviate the fitness cost imposed by transmitted plasmids. Derivative mutations may impair antibiotic efficacy and threaten the value of antibiotic treatments. Enhanced understanding of how bacteria adapt to the antibiotic environment will lead to new therapeutic strategies for antibiotic-resistant infections.
Collapse
Affiliation(s)
- Xiaojing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujiao Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xintong Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinling Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yixuan Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|