1
|
Ran J, Zhou J. Post-Translational Modifications in Cilia and Ciliopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e16562. [PMID: 40433930 DOI: 10.1002/advs.202416562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Cilia are microtubule-based organelles that extend from the surface of most vertebrate cells, and they play important roles in diverse cellular processes during embryonic development and tissue homeostasis. Mutations in ciliary proteins are associated with a wide range of human diseases, collectively referred to as ciliopathies. The past decades have witnessed significant advances in the identification of post-translational modifications (PTMs) in ciliary proteins, as well as the enzymes responsible for the PTMs. For example, acetylation of α-tubulin at lysine 40 is essential for ciliary assembly and maintenance, while ubiquitination of centrosomal proteins, such as pericentriolar material 1, regulates ciliary disassembly. In addition, accumulating evidence has shown that PTMs are essential for modulating ciliary structure and function, and that dysregulation of these modifications leads to the development of ciliopathies. In this review, current knowledge of PTMs in ciliary proteins is summarized, and their roles in regulating ciliary formation, homeostasis, and signaling are highlighted. The contribution of aberrant ciliary PTMs to ciliopathies is also discussed, along with the potential of targeting PTMs for ciliopathy treatment, including pharmacological modulation of PTM-related enzymes or substrates, which may provide new avenues for therapeutic intervention in ciliopathies.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Pérez-González A, Ramírez-Díaz I, Guzmán-Linares J, Sarvari P, Sarvari P, Rubio K. ncRNAs Orchestrate Chemosensitivity Induction by Neddylation Blockades. Cancers (Basel) 2024; 16:825. [PMID: 38398217 PMCID: PMC10886669 DOI: 10.3390/cancers16040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
We performed an integrative transcriptomic in silico analysis using lung adenocarcinoma A549 cells treated with the neddylation inhibitor MLN4924 and the gefitinib-resistant PC9 cell line (PC9GR). We focused on the transcriptional effects of the top differentially expressed ncRNA biotypes and their correlating stemness factors. Interestingly, MLN4924-treated cells showed a significant upregulation of mRNAs involved in carcinogenesis, cell attachment, and differentiation pathways, as well as a parallel downregulation of stemness maintenance and survival signaling pathways, an effect that was inversely observed in PC9GR cells. Moreover, we found that stemness factor expression could be contrasted by selected up-regulated ncRNAs upon MLN4924 treatment in a dose and time-independent manner. Furthermore, upregulated miRNAs and lncRNA-targeted mRNAs showed an evident enrichment of proliferation, differentiation, and apoptosis pathways, while downregulated ncRNA-targeted mRNAs were implicated in stem cell maintenance. Finally, our results proved that stemness (KLF4 and FGFR2) and epithelial-mesenchymal transition (ZEB2, TWIST2, SNAI2, CDH2, and VIM) factors, which are highly expressed in PC9GR cells compared to gefitinib-sensitive PC9 cells, could be abrogated with the neddylation inhibitor MLN4924 mainly through activation of epithelial differentiation pathways, thus exerting a protective role in lung cancer cells and chemosensitivity against lung tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
- Faculty of Biotechnology, Popular and Autonomous, University of Puebla State (UPAEP), Puebla 72410, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Pouya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Pourya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| |
Collapse
|
4
|
Umlauf BJ, Frampton G, Cooper A, Greene HF. A novel strategy to increase the therapeutic potency of GBM chemotherapy via altering parenchymal/cerebral spinal fluid clearance rate. J Control Release 2023; 364:195-205. [PMID: 37865172 DOI: 10.1016/j.jconrel.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Patients with glioblastoma (GBM) face a poor prognosis with a median survival of less than two years. Escalating the dose of chemotherapy is often impossible due to patient comorbidities; thus, we focused on modulating brain clearance as a mechanism to enhance drug accumulation. Given the recently identified interconnectivity between brain parenchymal fluid and cerebral spinal fluid (CSF), we reasoned enhancing drug concentration in the CSF also increases drug concentration in the parenchyma where a GBM resides. To improve drug accumulation in the CSF, we impair the motility of ependymal cell cilia. We identified FDA-approved therapeutics that interact with cilia as a "side effect." Therapeutics that inhibit airway cilia also inhibit ependymal cilia. Multiple cilia-inhibiting drugs, when administered in combination with GBM chemotherapy temozolomide (TMZ), significantly improved the overall survival of mice bearing orthotopic GBM. Combining TMZ with lidocaine results in 100% of animals surviving tumor-free to the study endpoint. This treatment results in a ~ 40-fold increase in brain TMZ levels and is well-tolerated. Mice bearing MGMT methylated, human PDX orthotopic GBM also responded with 100% of animals surviving tumor-free to the study endpoint. Finally, even mice bearing TMZ-resistant, orthotopic GBM responded to the combination treatment with 40% of animals surviving tumor-free to the study endpoint, implying this strategy can sensitize TMZ-resistant GBM. These studies offer a new concept for treating malignant brain tumors by improving the accumulation of TMZ in the CNS. In the future, this regimen may also improve the treatment of additional encephalopathies treated by brain-penetrating therapeutics. SIGNIFICANCE: We exploit the interconnectivity of parenchymal and cerebral spinal fluid to enhance the amount of temozolomide that accumulates in the central nervous system to improve the survival of mice bearing brain tumors.
Collapse
Affiliation(s)
- Benjamin J Umlauf
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA; Mulva Clinic for the Neurosciences, The University of Texas at Austin, 1601 Trinity St. Bldg A., Austin, USA.
| | - Gabriel Frampton
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Alexis Cooper
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Hannah-Faith Greene
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| |
Collapse
|
5
|
He ZX, Yang WG, Zengyangzong D, Gao G, Zhang Q, Liu HM, Zhao W, Ma LY. Targeting cullin neddylation for cancer and fibrotic diseases. Theranostics 2023; 13:5017-5056. [PMID: 37771770 PMCID: PMC10526667 DOI: 10.7150/thno.78876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 09/30/2023] Open
Abstract
Protein neddylation is a post-translational modification, and its best recognized substrates are cullin family proteins, which are the core component of Cullin-RING ligases (CRLs). Given that most neddylation pathway proteins are overactivated in different cancers and fibrotic diseases, targeting neddylation becomes an emerging approach for the treatment of these diseases. To date, numerous neddylation inhibitors have been developed, of which MLN4924 has entered phase I/II/III clinical trials for cancer treatment, such as acute myeloid leukemia, melanoma, lymphoma and solid tumors. Here, we systematically describe the structures and biological functions of the critical enzymes in neddylation, highlight the medicinal chemistry advances in the development of neddylation inhibitors and propose the perspectives concerning targeting neddylation for cancer and fibrotic diseases.
Collapse
Affiliation(s)
- Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei-guang Yang
- Children's hospital affiliated of Zhengzhou university; Henan children's hospital; Zhengzhou children's hospital, Henan Zhengzhou 450000, China
| | - Dan Zengyangzong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
- Key Laboratory of Cardio-cerebrovascular Drug, Henan Province, Zhumadian 463000, China
| |
Collapse
|
6
|
Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol 2023; 16:87. [PMID: 37525282 PMCID: PMC10388525 DOI: 10.1186/s13045-023-01485-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
NEDDylation, a post-translational modification through three-step enzymatic cascades, plays crucial roles in the regulation of diverse biological processes. NEDD8-activating enzyme (NAE) as the only activation enzyme in the NEDDylation modification has become an attractive target to develop anticancer drugs. To date, numerous inhibitors or agonists targeting NAE have been developed. Among them, covalent NAE inhibitors such as MLN4924 and TAS4464 currently entered into clinical trials for cancer therapy, particularly for hematological tumors. This review explains the relationships between NEDDylation and cancers, structural characteristics of NAE and multistep mechanisms of NEDD8 activation by NAE. In addition, the potential approaches to discover NAE inhibitors and detailed pharmacological mechanisms of NAE inhibitors in the clinical stage are explored in depth. Importantly, we reasonably investigate the challenges of NAE inhibitors for cancer therapy and possible development directions of NAE-targeting drugs in the future.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Inhibition of NEDD8 NEDDylation induced apoptosis in acute myeloid leukemia cells via p53 signaling pathway. Biosci Rep 2022; 42:231601. [PMID: 35880551 PMCID: PMC9386570 DOI: 10.1042/bsr20220994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
MLN4924 is a potent and selective small-molecule inhibitor of NEDD8-activating enzyme, which showed antitumor effect in several types of malignant tumor types. However, the mechanism of action of MLN4924 in acute myeloid leukemia (AML) requires further investigation. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the mRNA levels of genes. Gene expression was knocked down by short hairpin RNA (shRNA). Moreover, the protein expression was detected by Western blotting (WB) assay. The proliferation and apoptosis of AML cells were measured by Cell Counting Kit-8 (CCK8) assay and flow cytometry (FCM). In the present study, we observed that the mRNA expression levels of NEDD8, UBA3, UBE2M and RBX1 in AML patients were up-regulated compared with healthy controls, which were correlated with worse overall survival (OS) of patients. Besides, knockdown of UBA3, UBE2M and RBX1 inhibited the NEDDylation of CULs and increased the protein expression of p53 and p21 in MOLM-13 cell line. In AML cells, MLN4924 inhibited cell proliferation, promoted cell apoptosis, and induced cell cycle arrest at the G2/M phase. As revealed by experiments in vivo and in vitro, the NEDDylation of CULs was significantly inhibited and the p53 signaling pathway was activated after MLN4924 treatment. So, we concluded that NEDD8, UBA3, UBE2M and RBX1 may serve as the prognostic biomarkers and novel therapeutic targets for AML. Inhibition of the NEDDylation pathway resulted in an anti-leukemia effect by activating the p53 signaling pathway.
Collapse
|
8
|
Qin X, Dang W, Yang X, Wang K, Kebreab E, Lyu L. Neddylation inactivation affects cell cycle and apoptosis in sheep follicular granulosa cells. J Cell Physiol 2022; 237:3278-3291. [PMID: 35578798 DOI: 10.1002/jcp.30777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022]
Abstract
Protein neddylation inactivation is a novel topic in cancer research. However, there are few studies on the mechanism of neddylation underlying the development of sheep follicular granulosa cells (GCs). In this study, the development of follicular GCs in sheep was inactivated by MLN4924, a neddylation-specific inhibitor, which significantly attenuated the proliferation and cell index of sheep follicular GCs. Further, the inactivation of neddylation by MLN4924 caused the accumulation of the cullin ring ligase (CRLs) substrates Wee1 and c-Myc, which could upregulate NOXA protein expression. Meanwhile, the B-cell lymphoma/leukemia 2 (BCL2) family members Bcl-2 and MCL-1 were downregulated, subsequently inducing apoptosis in follicular GCs of sheep. Increasing Wee1 levels caused G2/M-phase arrest. The effects of neddylation inactivation on Akt, the JAK2/STAT3 signaling pathway, and Forkhead box class O(FOXO) family members were evaluated. Neddylation inactivation by MLN4924 increased the levels of phospho-Akt, JAK2, phospho-STAT3, and FOXO1 (p < 0.05) and decreased the levels of phospho-FOXO3a and STAT3 (p < 0.05). In addition, MLN4924 could alter the mitochondrial morphology of GCs, increase cellular glucose utilization and lactate production, increase reactive oxygen species (ROS) generation, and promote sheep follicular GCs glycolysis, thus causing changes in mitochondrial functions. Together, these findings point to an unrecognized role of neddylation in regulating follicular GCs proliferation in sheep.
Collapse
Affiliation(s)
- Xiaowei Qin
- Animal Genetics, Breeding and Reproduction Laboratory, College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenqing Dang
- Animal Genetics, Breeding and Reproduction Laboratory, College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaofeng Yang
- Animal Genetics, Breeding and Reproduction Laboratory, College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Kai Wang
- Animal Genetics, Breeding and Reproduction Laboratory, College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ermias Kebreab
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Lihua Lyu
- Animal Genetics, Breeding and Reproduction Laboratory, College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
9
|
Discovery of a cinnamyl piperidine derivative as new neddylation inhibitor for gastric cancer treatment. Eur J Med Chem 2021; 226:113896. [PMID: 34624825 DOI: 10.1016/j.ejmech.2021.113896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
Targeting neddylation pathway has been recognized as an attractive anticancer therapeutic strategy, thus discovering potent and selective neddylation inhibitors is highly desirable. Our work reported the discovery of novel cinnamyl piperidine compounds and their antitumor activity in vitro and in vivo. Among these compounds, compound 4g was identified as a novel neddylation inhibitor and decreased the neddylation levels of cullin 1, cullin 3 and cullin 5. Mechanistic studies demonstrated that compound 4g could inhibit the migration ability of gastric cancer cells and induce apoptosis partly mediated by the Nrf2-Keap1 pathway. Furthermore, in vivo anti-tumor studies showed that 4g effectively inhibited tumor growth without obvious toxicity. Collectively, the cinnamyl piperidine derivatives could serve as new lead compounds for developing highly effective neddylation inhibitors for gastric cancer therapy.
Collapse
|
10
|
Astrocyte-Derived Extracellular Vesicle-Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biol Psychiatry 2021; 90:575-585. [PMID: 34417054 DOI: 10.1016/j.biopsych.2021.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Morphine is used extensively in the clinical setting owing to its beneficial effects, such as pain relief; its therapeutic utility is limited because the prolonged use of morphine often results in tolerance and addiction. Astrocytes in the brain are a direct target of morphine action and play an essential role in the development of morphine tolerance. Primary cilia and the cilia-mediated sonic hedgehog (SHH) signaling pathways have been shown to play a role in drug resistance and morphine tolerance, respectively. Extracellular vesicles (EVs) play important roles as cargo-carrying vesicles mediating communication among cells and tissues. METHODS C57BL/6N mice were administered morphine for 8 days to develop tolerance, which was determined using the tail-flick and hot plate assays. EVs were separated from astrocyte-conditioned media using either size exclusion chromatography or ultracentrifugation approaches, followed by characterization of EVs using nanoparticle tracking analysis for EV size distribution and number, Western blotting for EV markers, and electron microscopy for EV morphology. Astrocytes were treated with EVs for 24 hours, followed by assessing primary cilia by fluorescent immunostaining for primary cilia markers (ARL13B and acetylated tubulin). RESULTS Morphine-tolerant mice exhibited an increase in primary cilia length and percentage of ciliated astrocytes. The levels of SHH protein were upregulated in morphine-stimulated astrocyte-derived EVs. SHH on morphine-stimulated astrocyte-derived EVs activated SHH signaling in astrocytes through primary cilia. Our in vivo study demonstrated that inhibition of either EV release or primary cilia prevents morphine tolerance in mice. CONCLUSIONS EV-mediated primary ciliogenesis contributes to the development of morphine tolerance.
Collapse
|
11
|
Cullin 1 (CUL1) Promotes Primary Ciliogenesis through the Induction of Ubiquitin-Proteasome-Dependent Dvl2 Degradation. Int J Mol Sci 2021; 22:ijms22147572. [PMID: 34299191 PMCID: PMC8307194 DOI: 10.3390/ijms22147572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are nonmotile cellular signal-sensing antenna-like structures composed of microtubule-based structures that distinguish them from motile cilia in structure and function. Primary ciliogenesis is regulated by various cellular signals, such as Wnt, hedgehog (Hh), and platelet-derived growth factor (PDGF). The abnormal regulation of ciliogenesis is closely related to developing various human diseases, including ciliopathies and cancer. This study identified a novel primary ciliogenesis factor Cullin 1 (CUL1), a core component of Skp1-Cullin-F-box (SCF) E3 ubiquitin ligase complex, which regulates the proteolysis of dishevelled 2 (Dvl2) through the ubiquitin-proteasome system. Through immunoprecipitation-tandem mass spectrometry analysis, 176 Dvl2 interacting candidates were identified, of which CUL1 is a novel Dvl2 modulator that induces Dvl2 ubiquitination-dependent degradation. Neddylation-dependent CUL1 activity at the centrosomes was essential for centrosomal Dvl2 degradation and primary ciliogenesis. Therefore, this study provides a new mechanism of Dvl2 degradation by CUL1, which ultimately leads to primary ciliogenesis, and suggest a novel target for primary cilia-related human diseases.
Collapse
|
12
|
Gai W, Peng Z, Liu CH, Zhang L, Jiang H. Advances in Cancer Treatment by Targeting the Neddylation Pathway. Front Cell Dev Biol 2021; 9:653882. [PMID: 33898451 PMCID: PMC8060460 DOI: 10.3389/fcell.2021.653882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Developmental down-regulation protein 8 (NEDD8), expressed by neural progenitors, is a ubiquitin-like protein that conjugates to and regulates the biological function of its substrates. The main target of NEDD8 is cullin-RING E3 ligases. Upregulation of the neddylation pathway is closely associated with the progression of various tumors, and MLN4924, which inhibits NEDD8-activating enzyme (NAE), is a promising new antitumor compound for combination therapy. Here, we summarize the latest progress in anticancer strategies targeting the neddylation pathway and their combined applications, providing a theoretical reference for developing antitumor drugs and combination therapies.
Collapse
Affiliation(s)
- Wenbin Gai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Peixian People's Hospital, Xuzhou, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Zheng YC, Guo YJ, Wang B, Wang C, Mamun MAA, Gao Y, Liu HM. Targeting neddylation E2s: a novel therapeutic strategy in cancer. J Hematol Oncol 2021; 14:57. [PMID: 33827629 PMCID: PMC8028724 DOI: 10.1186/s13045-021-01070-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 M (UBE2M) and ubiquitin-conjugating enzyme E2 F (UBE2F) are the two NEDD8-conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the activity of target proteins. The activity of E2 enzymes requires both a 26-residue N-terminal docking peptide and a conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell-expressed developmentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non-cullin substrates, UBE2M and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M-defective in cullin neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yan-Jia Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
14
|
Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes. Neoplasia 2020; 22:179-191. [PMID: 32145688 PMCID: PMC7076571 DOI: 10.1016/j.neo.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Cullin-RING E3 ligase (CRL) is the largest family of E3 ubiquitin ligase, responsible for ubiquitylation of ∼20% of cellular proteins. CRL plays an important role in many biological processes, particularly in cancers due to abnormal activation. CRL activation requires neddylation, an enzymatic cascade transferring small ubiquitin-like protein NEDD8 to a conserved lysine residue on cullin proteins. Recent studies have validated that neddylation is an attractive anticancer target. In this study, we report the establishment of an Alpha-Screen-based high throughput screen (HTS) assay for in vitro CUL5 neddylation, and screened a library of 17,000 compounds including FDA approved drugs, natural products and synthetic drug-like small-molecule compounds. Gossypol, a natural compound derived from cotton seed, was identified as an inhibitor of cullin neddylation. Biochemical studies showed that gossypol blocked neddylation of both CUL5 and CUL1 through direct binding to SAG-CUL5 or RBX1-CUL1 complex, and CUL5-H572 plays a key role for gossypol binding. On cellular level, gossypol inhibited cullin neddylation in a variety of cancer cell lines and selectively caused accumulation of NOXA and MCL1, the substrates of CUL5 and CUL1, respectively, in multiple cancer cell lines. Combination of gossypol with specific MCL1 inhibitor synergistically suppress growth of human cancer cells. Our study revealed a previously unknown anti-cancer mechanism of gossypol with potential to develop a new class of neddylation inhibitors.
Collapse
|
15
|
Akt+ IKKα/β+ Rab5+ Signalosome Mediate the Endosomal Recruitment of Sec61 and Contribute to Cross-Presentation in Bone Marrow Precursor Cells. Vaccines (Basel) 2020; 8:vaccines8030539. [PMID: 32957586 PMCID: PMC7563657 DOI: 10.3390/vaccines8030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Cross-presentation in dendritic cells (DC) requires the endosomal relocations of internalized antigens and the endoplasmic reticulum protein Sec61. Despite the fact that endotoxin-containing pathogen and endotoxin-free antigen have different effects on protein kinase B (Akt) and I-kappa B Kinase α/β (IKKα/β) activation, the exact roles of Akt phosphorylation, IKKα or IKKβ activation in endotoxin-containing pathogen-derived cross-presentation are poorly understood. In this study, endotoxin-free ovalbumin supplemented with endotoxin was used as a model pathogen. We investigated the effects of endotoxin-containing pathogen and endotoxin-free antigen on Akt phosphorylation, IKKα/β activation, and explored the mechanisms that the endotoxin-containing pathogen orchestrating the endosomal recruitment of Sec61 of the cross-presentation in bone marrow precursor cells (BMPC). We demonstrated that endotoxin-containing pathogen and endotoxin-free antigen efficiently induced the phosphorylation of Akt-IKKα/β and Akt-IKKα, respectively. Endotoxin-containing pathogen derived Akt+ IKKα/β+ Rab5+ signalosome, together with augmented the recruitment of Sec61 toward endosome, lead to the increased cross-presentation in BMPC. Importantly, the endosomal recruitment of Sec61 was partly mediated by the formation of Akt+ IKKα/β+ signalosome. Thus, these data suggest that Akt+ IKKα/β+ Rab5+ signalosome contribute to endotoxin-containing pathogen-induced the endosomal recruitment of Sec61 and the superior efficacy of cross-presentation in BMPC.
Collapse
|
16
|
Hasenpusch-Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, Abrams SR, Reiter JF, Schneider-Maunoury S, Theil T. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. eLife 2020; 9:e58162. [PMID: 32840212 PMCID: PMC7481005 DOI: 10.7554/elife.58162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 01/13/2023] Open
Abstract
During the development of the cerebral cortex, neurons are generated directly from radial glial cells or indirectly via basal progenitors. The balance between these division modes determines the number and types of neurons formed in the cortex thereby affecting cortical functioning. Here, we investigate the role of primary cilia in controlling the decision between forming neurons directly or indirectly. We show that a mutation in the ciliary gene Inpp5e leads to a transient increase in direct neurogenesis and subsequently to an overproduction of layer V neurons in newborn mice. Loss of Inpp5e also affects ciliary structure coinciding with reduced Gli3 repressor levels. Genetically restoring Gli3 repressor rescues the decreased indirect neurogenesis in Inpp5e mutants. Overall, our analyses reveal how primary cilia determine neuronal subtype composition of the cortex by controlling direct versus indirect neurogenesis. These findings have implications for understanding cortical malformations in ciliopathies with INPP5E mutations.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Christine Laclef
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Matt Colligan
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Eamon Fitzgerald
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Katherine Howe
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Emily Carroll
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Shaun R Abrams
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Thomas Theil
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
17
|
Guen VJ, Prigent C. Targeting Primary Ciliogenesis with Small-Molecule Inhibitors. Cell Chem Biol 2020; 27:1224-1228. [PMID: 32795416 DOI: 10.1016/j.chembiol.2020.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022]
Abstract
The primary cilium is generally a non-motile solitary organelle that protrudes from a basal body at the cell surface in various cell types in multicellular organisms. This microtubule-based structure acts as a cell signaling platform to control key cellular processes, including cell proliferation and differentiation in development and in adult tissues. Elongated and/or dysfunctional primary cilia cause developmental disorders termed ciliopathies and cancers. The genetic inhibition of ciliogenesis inducers can block the progression of these diseases in model organisms. Thus, pharmacological inhibition of primary ciliogenesis has emerged as a potential strategy to treat these pathological conditions. Pharmacological inhibitors that affect cilium assembly, and have an impact on other cellular processes, have been identified. Here, we review some of these tools and discuss their value and limitations in the study of primary cilium biology, as well as for the treatment of some ciliopathies and cancers.
Collapse
Affiliation(s)
- Vincent J Guen
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)- UMR 6290, 35000 Rennes, France.
| | - Claude Prigent
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)- UMR 6290, 35000 Rennes, France
| |
Collapse
|
18
|
Lu Y, Yang X. The pivotal roles of neddylation pathway in immunoregulation. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:782-792. [PMID: 32749072 PMCID: PMC7654410 DOI: 10.1002/iid3.335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
Abstract
Introduction Protein neddylation, one of the most important posttranslational modifications that tagging neuronal precursor cell‐expressed developmentally downregulated protein 8 onto substrate proteins, plays fundamental roles in the process of many cellular functions. A number of studies have demonstrated the critical roles of neddylation modification in multiple pathophysiological processes, but its regulatory role in the immune system has only been finitely unveiled. Methods In this review, the latest advances in the field of neddylation modification in regulating the immune responses are succinctly discussed. Results Neddylation modification acts as a crucial modulator of innate immune cells (neutrophils, macrophages, and dendritic cells) and lymphocytes. Dysregulation of neddylation alters characteristics and functions of those cells due to abnormal degradation of key signaling molecules involved in immunoregulation. Furthermore, the ectopic immune responses caused by the abnormal neddylation play pivotal roles in a variety of immune‐related diseases, such as infection, inflammation, and cancer. Conclusions The pivotal roles of neddylation pathway in immunoregulation are attracted more and more attention, which may provide new insights into the pathogenesis of a variety of immune‐related diseases and help to indicate new therapeutic targets and potential treatment strategies.
Collapse
Affiliation(s)
- Yun Lu
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuguang Yang
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Yu Q, Jiang Y, Sun Y. Anticancer drug discovery by targeting cullin neddylation. Acta Pharm Sin B 2020; 10:746-765. [PMID: 32528826 PMCID: PMC7276695 DOI: 10.1016/j.apsb.2019.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Protein neddylation is a post-translational modification which transfers the ubiquitin-like protein NEDD8 to a lysine residue of the target substrate through a three-step enzymatic cascade. The best-known substrates of neddylation are cullin family proteins, which are the core component of Cullin–RING E3 ubiquitin ligases (CRLs). Given that cullin neddylation is required for CRL activity, and CRLs control the turn-over of a variety of key signal proteins and are often abnormally activated in cancers, targeting neddylation becomes a promising approach for discovery of novel anti-cancer therapeutics. In the past decade, we have witnessed significant progress in the field of protein neddylation from preclinical target validation, to drug screening, then to the clinical trials of neddylation inhibitors. In this review, we first briefly introduced the nature of protein neddylation and the regulation of neddylation cascade, followed by a summary of all reported chemical inhibitors of neddylation enzymes. We then discussed the structure-based targeting of protein–protein interaction in neddylation cascade, and finally the available approaches for the discovery of new neddylation inhibitors. This review will provide a focused, up-to-date and yet comprehensive overview on the discovery effort of neddylation inhibitors.
Collapse
Key Words
- AMP, adenosine 5′-monophosphate
- Anticancer
- BLI, biolayer interferometry
- CETSA, cellular thermal shift assay
- Drug discovery
- FH, frequent hitters
- HTS, high-throughput screen
- High-throughput screening
- IP, immunoprecipitation
- ITC, isothermal titration calorimetry
- NAE, NEDD8 activating enzyme
- Neddylation
- PAINS, pan-assay interference compounds
- SAR, structure–activity relationship
- Small molecule inhibitors
- UBL, ubiquitin-like protein
- Ubiquitin–proteasome system
- Virtual screen
Collapse
|
20
|
Ciliary Genes in Renal Cystic Diseases. Cells 2020; 9:cells9040907. [PMID: 32276433 PMCID: PMC7226761 DOI: 10.3390/cells9040907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022] Open
Abstract
Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to formation of cysts which in turn contribute to development of diverse renal diseases, including kidney ciliopathies and renal cancer. Here, we review current knowledge on the role of ciliary genes in kidney ciliopathies and renal cell carcinoma (RCC). Special focus is given on the impact of mutations and altered expression of ciliary genes (e.g., encoding polycystins, nephrocystins, Bardet-Biedl syndrome (BBS) proteins, ALS1, Oral-facial-digital syndrome 1 (OFD1) and others) in polycystic kidney disease and nephronophthisis, as well as rare genetic disorders, including syndromes of Joubert, Meckel-Gruber, Bardet-Biedl, Senior-Loken, Alström, Orofaciodigital syndrome type I and cranioectodermal dysplasia. We also show that RCC and classic kidney ciliopathies share commonly disturbed genes affecting cilia function, including VHL (von Hippel-Lindau tumor suppressor), PKD1 (polycystin 1, transient receptor potential channel interacting) and PKD2 (polycystin 2, transient receptor potential cation channel). Finally, we discuss the significance of ciliary genes as diagnostic and prognostic markers, as well as therapeutic targets in ciliopathies and cancer.
Collapse
|
21
|
Mao H, Sun Y. Neddylation-Independent Activities of MLN4924. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:363-372. [PMID: 31898238 DOI: 10.1007/978-981-15-1025-0_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MLN4924, also known as pevonedistat, is a highly selective small-molecule inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8)-activating enzyme (NAE) to block the entire neddylation modification cascade, leading to inactivation of cullin-RING ligases (CRLs), since activation of CRLs requires cullin neddylation. MLN4924 showed impressive anticancer activity in many preclinical studies and is currently in several Phase I/II clinical trials for anticancer therapy as a single agent or in combination with chemotherapeutic drugs.In addition to well-characterized anti-neddylation activity, recent studies showed that MLN4924 has several neddylation-independent activities. First, MLN4924 triggers EGFR dimerization to activate EGFR and its downstream RAS/MAPK and PI3K/AKT1 signals, leading to enhanced tumor sphere formation, accelerated EGF-mediated wound healing, and inhibited ciliogenesis. Second, MLN4924 induces PKM2 tetramerization to promote glycolysis, thus affecting energy metabolism. Third, MLN4924 inhibits the interaction between ACT1 (NF-κB activator 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) and attenuates IL-17A-mediated activation of NF-κB to reduce pulmonary inflammation. Fourth, MLN4924 inhibits IRF3 binding to the IFN-β promoter to inhibit IFN-β production. And finally, MLN4924 activates the JNK signaling pathway to reduce c-FLIP levels, thus enhancing TRAIL-induced apoptosis. This chapter will summarize these neddylation-independent activities of MLN4924 and discuss the underlying mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Hongmei Mao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Gilbert Family Neurofibromatosis Institute, Centers for Cancer and Immunology Research and Neuroscience Research, The Children's National Hospital, Washington, DC, USA
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Zhou Q, Sun Y. MLN4924: additional activities beyond neddylation inhibition. Mol Cell Oncol 2019; 6:e1618174. [PMID: 31528694 DOI: 10.1080/23723556.2019.1618174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
MLN4924, a small molecular inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8) activating enzyme (NAE), blocks cullin neddylation to inactivate cullin-RING ligase. We found that MLN4924 has additional activities: it triggers EGFR dimerization and activation of RAS/MAPK and PI3K/AKT1 signals to stimulate tumor sphere formation and inhibit ciliogenesis; and it triggers PKM2 tetramerization to promote glycolysis.
Collapse
Affiliation(s)
- Qiyin Zhou
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir RunRun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Radiation and Cancer Biology, Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|