1
|
Thota LNR, Lopez Rosales JE, Placencia I, Zemskov EA, Tonino P, Michael AN, Black SM, Chignalia AZ. The Pulmonary Endothelial Glycocalyx Modifications in Glypican 1 Knockout Mice Do Not Affect Lung Endothelial Function in Physiological Conditions. Int J Mol Sci 2023; 24:14568. [PMID: 37834029 PMCID: PMC10573009 DOI: 10.3390/ijms241914568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The endothelial glycocalyx is a dynamic signaling surface layer that is involved in the maintenance of cellular homeostasis. The glycocalyx has a very diverse composition, with glycoproteins, proteoglycans, and glycosaminoglycans interacting with each other to form a mesh-like structure. Due to its highly interactive nature, little is known about the relative contribution of each glycocalyx constituent to its overall function. Investigating the individual roles of the glycocalyx components to cellular functions and system physiology is challenging, as the genetic manipulation of animals that target specific glycocalyx components may result in the development of a modified glycocalyx. Thus, it is crucial that genetically modified animal models for glycocalyx components are characterized and validated before the development of mechanistic studies. Among the glycocalyx components, glypican 1, which acts through eNOS-dependent mechanisms, has recently emerged as a player in cardiovascular diseases. Whether glypican 1 regulates eNOS in physiological conditions is unclear. Herein, we assessed how the deletion of glypican 1 affects the development of the pulmonary endothelial glycocalyx and the impact on eNOS activity and endothelial function. Male and female 5-9-week-old wild-type and glypican 1 knockout mice were used. Transmission electron microscopy, immunofluorescence, and immunoblotting assessed the glycocalyx structure and composition. eNOS activation and content were assessed by immunoblotting; nitric oxide production was assessed by the Griess reaction. The pulmonary phenotype was evaluated by histological signs of lung injury, in vivo measurement of lung mechanics, and pulmonary ventilation. Glypican 1 knockout mice showed a modified glycocalyx with increased glycocalyx thickness and heparan sulfate content and decreased expression of syndecan 4. These alterations were associated with decreased phosphorylation of eNOS at S1177. The production of nitric oxides was not affected by the deletion of glypican 1, and the endothelial barrier was preserved in glypican 1 knockout mice. Pulmonary compliance was decreased, and pulmonary ventilation was unaltered in glypican 1 knockout mice. Collectively, these data indicate that the deletion of glypican 1 may result in the modification of the glycocalyx without affecting basal lung endothelial function, validating this mouse model as a tool for mechanistic studies that investigate the role of glypican 1 in lung endothelial function.
Collapse
Affiliation(s)
- Lakshmi N. R. Thota
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Joaquin E. Lopez Rosales
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Ivan Placencia
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
| | - Evgeny A. Zemskov
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Paola Tonino
- Research, Innovation & Impact Cores Facilities, Imaging Cores-Electron, Life Sciences North, The University of Arizona, Tucson, AZ 85719, USA;
| | - Ashley N. Michael
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA
| | - Andreia Z. Chignalia
- Department of Anesthesiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA (J.E.L.R.)
- Department of Physiology, College of Medicine-Tucson, The University of Arizona, Tucson, AZ 85724, USA
- Sarver Heart Center, The University of Arizona, Tucson, AZ 85724, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
3
|
Mortazavi CM, Hoyt JM, Patel A, Chignalia AZ. The glycocalyx and calcium dynamics in endothelial cells. CURRENT TOPICS IN MEMBRANES 2023; 91:21-41. [PMID: 37080679 DOI: 10.1016/bs.ctm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The endothelial glycocalyx is a dynamic surface layer composed of proteoglycans, glycoproteins, and glycosaminoglycans with a key role in maintaining endothelial cell homeostasis. Its functions include the regulation of endothelial barrier permeability and stability, the transduction of mechanical forces from the vascular lumen to the vessel walls, serving as a binding site to multiple growth factors and vasoactive agents, and mediating the binding of platelets and the migration of leukocytes during an inflammatory response. Many of these processes are associated with changes in intracellular calcium levels that may occur through mechanisms that alter calcium entry in the endothelium or the release of calcium from the endoplasmic reticulum. Whether the endothelial glycocalyx can regulate calcium dynamics in endothelial cells is unresolved. Interestingly, during cardiovascular disease progression, changes in calcium dynamics are observed in association with the degradation of the glycocalyx and with changes in barrier permeability and vascular reactivity. Herein, we aim to provide a summarized overview of what is known regarding the role of the glycocalyx as a regulator of endothelial barrier and vascular reactivity during homeostatic and pathological conditions and to provide a perspective on how such processes may relate to calcium dynamics in endothelial cells, exploring a possible connection between components of the glycocalyx and calcium-sensitive pathways in the endothelium.
Collapse
Affiliation(s)
- Cameron M Mortazavi
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Jillian M Hoyt
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Aamir Patel
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Physiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Pharmacology & Toxicology, University of Arizona, College of Pharmacy, Tucson, AZ, United States.
| |
Collapse
|
4
|
Jo H, Manning K, Tarbell JM. Special Issue on Professor John M. Tarbell's Contribution to Cardiovascular Engineering. Cardiovasc Eng Technol 2021; 12:1-8. [PMID: 33415700 PMCID: PMC7790314 DOI: 10.1007/s13239-020-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Hanjoong Jo
- Wallace H. Coulter Distinguished Faculty Chair Professor, Wallace. H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA, 30322, USA.
| | - Keefe Manning
- Department of Biomedical Engineering and Surgery, Schreyer Honors College, The Pennsylvania State University, 122 CBE Building, University Park, PA, 16802, USA.
| | - John M Tarbell
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| |
Collapse
|