1
|
Fager M, Gubanski M, Carlsson Tedgren Å, Benmakhlouf H. Adaptation of dose-prescription for vestibular schwannoma radiosurgery taking body contouring method and heterogeneous material into account. Acta Oncol 2025; 64:319-325. [PMID: 40008908 PMCID: PMC11884334 DOI: 10.2340/1651-226x.2025.41924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Majority of vestibular schwannoma (VS) patients have undergone gamma-knife radiosurgery (GKRS) with favorable results. Clinical evidence is derived from doses calculated with a type-a algorithm, which in this case assumes all material to be water. A type-b algorithm (Convolution algorithm [CA]) taking tissue heterogeneity into account is available. Historically, body contour is defined using a 16-point approximation, whereas modern softwares generate the body from Magnetic Resonance Imaging (MRI). The accuracy in dose-calculation algorithms (DCA) and contouring method (CM) will have a significant influence in the relation between clinical outcome and dosimetric data. The objective was to investigate the impact of DCA and CMs on dose distribution while preserving treatment conditions. METHODS Treatment plans for 16 VS patients were recalculated in terms of DCA and CM. The difference in the dose covering 99% of the VS (DVS99%) depending on CM and DCA was estimated. The difference in DVS99% was used to adopt the prescription of new CA-based plans. CA-plans were recalculated to TMR10 to evaluate clinical treatability, as clinical evidence is derived from TMR10-doses. RESULTS Both CM and DCA had a significant impact on the dose to VS and surrounding structures. CM altered the doses homogenously by 2.1-3.3%, whereas DCA heterogeneously by 5.0-10.7%. An increase of 9.1[8.1, 10.0]% was found for DVS99% and the CA-plans recalculated into TMR10 resulted in clinically treatable plans. INTERPRETATION We conclude that transferring to more modern algorithms that take tissue heterogeneity into account heterogeneously alter dose distributions. This work establishes a safe pathway to adopt prescription dose for VS while preserving clinical treatability.
Collapse
Affiliation(s)
- Marcus Fager
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Solna, Sweden.
| | - Michael Gubanski
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; Department of Radiotherapy, Karolinska University Hospital, Solna, Sweden; Department of Neurosurgery, Karolinska University Hospital, Solna, Sweden
| | - Åsa Carlsson Tedgren
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Solna, Sweden; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, CMIV, Linköping University, Linköping, Sweden
| | - Hamza Benmakhlouf
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Solna, Sweden; Department of Radiotherapy, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
2
|
Pogue JA, Cardenas CE, Harms J, Soike MH, Kole AJ, Schneider CS, Veale C, Popple R, Belliveau JG, McDonald AM, Stanley DN. Benchmarking Automated Machine Learning-Enhanced Planning With Ethos Against Manual and Knowledge-Based Planning for Locally Advanced Lung Cancer. Adv Radiat Oncol 2023; 8:101292. [PMID: 37457825 PMCID: PMC10344691 DOI: 10.1016/j.adro.2023.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Currently, there is insufficient guidance for standard fractionation lung planning using the Varian Ethos adaptive treatment planning system and its unique intelligent optimization engine. Here, we address this gap in knowledge by developing a methodology to automatically generate high-quality Ethos treatment plans for locally advanced lung cancer. Methods and Materials Fifty patients previously treated with manually generated Eclipse plans for inoperable stage IIIA-IIIC non-small cell lung cancer were included in this institutional review board-approved retrospective study. Fifteen patient plans were used to iteratively optimize a planning template for the Daily Adaptive vs Non-Adaptive External Beam Radiation Therapy With Concurrent Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Prospective Randomized Trial of an Individualized Approach for Toxicity Reduction (ARTIA-Lung); the remaining 35 patients were automatically replanned without intervention. Ethos plan quality was benchmarked against clinical plans and reoptimized knowledge-based RapidPlan (RP) plans, then judged using standard dose-volume histogram metrics, adherence to clinical trial objectives, and qualitative review. Results Given equal prescription target coverage, Ethos-generated plans showed improved primary and nodal planning target volume V95% coverage (P < .001) and reduced lung gross tumor volume V5 Gy and esophagus D0.03 cc metrics (P ≤ .003) but increased mean esophagus and brachial plexus D0.03 cc metrics (P < .001) compared with RP plans. Eighty percent, 49%, and 51% of Ethos, clinical, and RP plans, respectively, were "per protocol" or met "variation acceptable" ARTIA-Lung planning metrics. Three radiation oncologists qualitatively scored Ethos plans, and 78% of plans were clinically acceptable to all reviewing physicians, with no plans receiving scores requiring major changes. Conclusions A standard Ethos template produced lung radiation therapy plans with similar quality to RP plans, elucidating a viable approach for automated plan generation in the Ethos adaptive workspace.
Collapse
Affiliation(s)
- Joel A. Pogue
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carlos E. Cardenas
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joseph Harms
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael H. Soike
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adam J. Kole
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig S. Schneider
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher Veale
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jean-Guy Belliveau
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew M. McDonald
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
- University of Alabama at Birmingham Institute for Cancer Outcomes and Survivorship, Birmingham, Alabama
| | - Dennis N. Stanley
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Gopalakrishnan Z, Bhasi S, P R, Menon SV, B S, Thayil AG, Nair RK. Dosimetric comparison of analytical anisotropic algorithm and the two dose reporting modes of Acuros XB dose calculation algorithm in volumetric modulated arc therapy of carcinoma lung and carcinoma prostate. Med Dosim 2022; 47:280-287. [PMID: 35690544 DOI: 10.1016/j.meddos.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Volumetric Modulated Arc Therapy (VMAT) is an important modality for radical radiotherapy of all major treatment sites. This study aims to compare Analytical Anisotropic Algorithm (AAA) and the two dose-reporting modes of Acuros XB (AXB) algorithm -the dose to medium option (Dm) and the dose to water option (Dw) in Volumetric Modulated Arc Therapy (VMAT) of carcinoma lung and carcinoma prostate. We also compared the measured dose with Treatment Planning System calculated dose for AAA and the two dose reporting options of Acuros XB using Electronic Portal Imaging Device (EPID) and ArcCHECK phantom. Treatment plans of twenty patients each who have already undergone radiotherapy for cancer of lung and cancer of prostate were selected for the study. Three sets of VMAT plans were generated in Eclipse Treatment Planning System (TPS), one with AAA and two plans with Acuros-Dm and Acuros-Dw options. The Dose Volume Histograms (DVHs) were compared and analyzed for Planning Target Volume (PTV) and critical structures for all the plans. Verification plans were created for each plan and measured doses were compared with TPS calculated doses using EPID and ArcCHECK phantom for all the three algorithms. For lung plans, the mean dose to PTV in the AXB-Dw plans was higher by 1.7% and in the AXB-Dm plans by 0.66% when compared to AAA plans. For prostate plans, the mean dose to PTV in the AXB-Dw plans was higher by 3.0% and in the AXB-Dm plans by 1.6% when compared to AAA plans. There was no difference in the Conformity Index (CI) between AAA and AXB-Dm and between AAA and AXB-Dw plans for both sites. But the homogeneity worsened in AXB-Dw and AXB-Dm plans when compared to AAA plans for both sites. AXB-Dw calculated higher dose values for PTV and all the critical structures with significant differences with one or two exceptions. Point dose measurements in ArcCHECK phantom showed that AXB-Dm and AXB-Dw options showed very small deviations with measured dose distributions than AAA for both sites. Results of EPID QA also showed better pass rates for AXB-Dw and AXB-Dm than AAA for both sites when gamma analysis was done for 3%/3 mm and 2%/2 mm criteria. With reference to the results, it is always better to choose Acuros algorithm for dose calculations if it is available in the TPS. AXB-Dw plans showed very high dose values in the PTV when compared to AAA and AXB-Dm in both sites studied. Also, the volume of PTV receiving 107% dose was significantly high in AXB-Dw plans compared to AXB-Dm plans in sites involving high density bones. Considering the results of dosimetric comparison and QA measurements, it is always better to choose AXB-Dm algorithm for dose calculations for all treatment sites especially when high density bony structures and complex treatment techniques are involved. For patient specific QA purposes, choosing AXB-Dm or AXB-Dw does not make any significant difference between calculated and measured dose distributions.
Collapse
Affiliation(s)
- Zhenia Gopalakrishnan
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala 695011, India
| | - Saju Bhasi
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala 695011, India
| | - Raghukumar P
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala 695011, India.
| | - Sharika V Menon
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala 695011, India
| | - Sarin B
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala 695011, India
| | - Anna George Thayil
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala 695011, India
| | - Raghuram K Nair
- SUT Royal Hospital, Ulloor, Thiruvananthapuram, Kerala 695011, India
| |
Collapse
|
4
|
Stanton C, Bell LJ, Le A, Griffiths B, Wu K, Adams J, Ambrose L, Andree‐Evarts D, Porter B, Bromley R, van Gysen K, Morgia M, Lamoury G, Eade T, Booth JT, Carroll S. Comprehensive nodal breast VMAT: solving the low-dose wash dilemma using an iterative knowledge-based radiotherapy planning solution. J Med Radiat Sci 2022; 69:85-97. [PMID: 34387031 PMCID: PMC8892431 DOI: 10.1002/jmrs.534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Aimed to develop a simple and robust volumetric modulated arc radiotherapy (VMAT) solution for comprehensive lymph node (CLN) breast cancer without increase in low-dose wash. METHODS Forty CLN-breast patient data sets were utilised to develop a knowledge-based planning (KBP) VMAT model, which limits low-dose wash using iterative learning and base-tangential methods as benchmark. Another twenty data sets were employed to validate the model comparing KBP-generated ipsilateral VMAT (ipsi-VMAT) plans against the benchmarked hybrid (h)-VMAT (departmental standard) and bowtie-VMAT (published best practice) methods. Planning target volume (PTV), conformity/homogeneity index (CI/HI), organ-at-risk (OAR), remaining-volume-at-risk (RVR) and blinded radiation oncologist (RO) plan preference were evaluated. RESULTS Ipsi- and bowtie-VMAT plans were dosimetrically equivalent, achieving greater nodal target coverage (P < 0.05) compared to h-VMAT with minor reduction in breast coverage. CI was enhanced for a small reduction in breast HI with improved dose sparing to ipsilateral-lung and humeral head (P < 0.05) at immaterial expense to spinal cord. Significantly, low-dose wash to OARs and RVR were comparable between all plan types demonstrating a simple VMAT class solution robust to patient-specific anatomic variation can be applied to CLN breast without need for complex beam modification (hybrid plans, avoidance sectors or other). This result was supported by blinded RO review. CONCLUSIONS A simple and robust ipsilateral VMAT class solution for CLN breast generated using iterative KBP modelling can achieve clinically acceptable target coverage and OAR sparing without unwanted increase in low-dose wash associated with increased second malignancy risk.
Collapse
Affiliation(s)
- Cameron Stanton
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Linda J. Bell
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Andrew Le
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Brooke Griffiths
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Kenny Wu
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Jessica Adams
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Leigh Ambrose
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Denise Andree‐Evarts
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Brian Porter
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Regina Bromley
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Kirsten van Gysen
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Marita Morgia
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Gillian Lamoury
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Thomas Eade
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Jeremy T. Booth
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Institute of Medical PhysicsSchool of PhysicsUniversity of SydneyCamperdownNew South WalesAustralia
| | - Susan Carroll
- Radiation Oncology DepartmentNorthern Sydney Cancer CentreRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolUniversity of SydneySt LeonardsNew South WalesAustralia
| |
Collapse
|
5
|
Kumar L, Bhushan M, Kishore V, Chowdhary R, Barik S, Sharma A, Gairola M. Dosimetric influence of acuros XB dose-to-medium and dose-to-water reporting modes on carcinoma cervix using intensity-modulated radiation therapy and volumetric rapidarc technique. J Med Phys 2022; 47:10-19. [PMID: 35548039 PMCID: PMC9084581 DOI: 10.4103/jmp.jmp_64_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Aim: We aimed to evaluate the dosimetric influence of Acuros XB (AXB) dose-to-medium (Dm) and dose-to-water (Dw) reporting mode on carcinoma cervix using intensity-modulated radiation therapy (IMRT) and RapidArc (RA) technique. Materials and Methods: A cohort of thirty patients cared for carcinoma cervix was retrospectively selected for the study. Plans were computed using analytical anisotropic algorithm (AAA), AXB-Dm, and AXB-Dw algorithms for dosimetric comparison. A paired t-test and Pitman–Morgan dispersion test were executed to appraise the difference in mean values and the inter-patient variability of the differences. Results: The dose–volume parameters were higher for AXB-Dw in contrast to AAA for IMRT and RA plans, excluding D98%, minimum dose to planning target volume (PTV) and rectum mean dose (RA). There was no systematic trend observed in dose–volume parameters for PTV and organs at risk (OARs) between AXB-Dm and AXB-Dw for IMRT and RA plans. The dose–volume parameters for target were higher for AXB-Dm in comparison to AAA in IMRT and RA plans, except D98% and minimum dose to PTV. Analysis envisaged less inter-patient variability while switching from AAA to AXB-Dm in comparison to those switching from AAA to AXB-Dw. Conclusions: The present study reveals the important difference between AAA, AXB-Dm, and AXB-Dw computations for cervix carcinoma using IMRT and RA techniques. The inter-patient variability and systematic difference in dose–volume parameters computed using AAA, AXB-Dm, and AXB-Dw algorithms present the possible impact on the dose prescription to PTV and their relative constraints to OARs for IMRT and RA techniques. This may help in the decision-making in clinic while switching from AAA to AXB (Dm or Dw) algorithm for cervix carcinoma using IMRT and RA techniques.
Collapse
|
6
|
Kumar L, Bhushan M, Kishore V, Yadav G, Gurjar OP. Dosimetric validation of Acuros® XB algorithm for RapidArc™ treatment technique: A post software upgrade analysis. J Cancer Res Ther 2021; 17:1491-1498. [PMID: 34916383 DOI: 10.4103/jcrt.jcrt_1154_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aim To validate the Acuros® XB (AXB) algorithm in Eclipse treatment planning system (TPS) for RapidArc™ (RA) technique following the software upgrades. Materials and Methods A Clinac-iX (2300CD) linear accelerator and Eclipse TPS (Varian Medical System, Inc., Palo Alto, USA) was used for commissioning of AXB algorithm using a 6 megavolts photon beam. Percentage depth dose (PDD) and profiles for field size 2 cm × 2 cm, 4 cm × 4 cm, 6 cm × 6 cm, 10 cm × 10 cm, 20 cm × 20 cm, 30 cm × 30 cm to 40 cm × 40 cm were taken. AXB calculated PDDs and profiles were evaluated against the measured and analytical anisotropic algorithm (AAA)-calculated PDDs and profiles. Test sites recommended by American Association of Physicists in Medicine task group (AAPM TG)-119 recommendation were used for RA planning and delivery verification using AXB algorithm. Results Dosimetric analysis of AXB calculated data showed that difference between calculated and measured data for PDD curves were maximum <1% beyond the depth of dose maximum and computed profiles in central region matches with maximum <1% for all considered field sizes. Ion-chamber measurements showed that the average confidence limit (CLs) was 0.034 and 0.020 in high-gradient and 0.047 and 0.042 in low-gradient regions, respectively, for AAA and AXB calculated RA plans. Portal measurements show the average CLs were 2.48 and 2.58 for AAA and AXB-calculated RA plans, with gamma passing criteria of 3%/3 mm. Conclusions AXB shows excellent agreement with measurements and AAA calculated data. The CLs were consistent with the baseline values published by TG-119. AXB algorithm has the potential to perform photon dose calculation with comparable fast calculation speed without negotiating the accuracy. AAPM TG-119 was successfully implemented to access the proper configuration of AXB algorithm following the TPS upgrade.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Applied Science and Humanities, Dr. A.P.J Abdul Kalam Technical University, Lucknow, Uttar Pradesh; Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Manindra Bhushan
- Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Vimal Kishore
- Department of Applied Science and Humanities, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Girigesh Yadav
- Department of Radiation Oncology, Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Om Prakash Gurjar
- Department of Radiotherapy, Mahatma Gandhi Memorial Medical College, Indore, Madhya Pradesh, India
| |
Collapse
|
7
|
Hardcastle N, Hughes J, Siva S, Kron T. Dose calculation and reporting with a linear Boltzman transport equation solver in vertebral SABR. Phys Eng Sci Med 2021; 45:43-48. [PMID: 34813052 DOI: 10.1007/s13246-021-01076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022]
Abstract
Vertebral Stereotactic ablative body radiotherapy (SABR) involves substantial tumour density heterogeneities. We evaluated the impact of a linear Boltzmann transport equation (LBTE) solver dose calculation on vertebral SABR dose distributions. A sequential cohort of 20 patients with vertebral metastases treated with SABR were selected. Treatment plans were initially planned with a convolution style dose calculation algorithm. The plan was copied and recalculated with a LBTE algorithm reporting both dose to water (Dw) or dose to medium (Dm). Target dose as a function of CT number, and spinal cord dose was compared between algorithms. Compared with a convolution algorithm, there was minimal change in PTV D90% with LBTE. LBTE reporting Dm resulted in reduced GTV D50% by (mean, 95% CI) 2.2% (1.9-2.6%) and reduced Spinal Cord PRV near-maximum dose by 3.0% (2.0-4.1%). LBTE reporting Dw resulted in increased GTV D50% by 2.4% (1.8-3.0%). GTV D50% decreased or increased with increasing CT number with Dm or Dw respectively. LBTE, reporting either Dm or Dw resulted in decreased central spinal cord dose by 8.7% (7.1-10.2%) and 7.2% (5.7-8.8%) respectively. Reported vertebral SABR tumour dose when calculating with an LBTE algorithm depends on tumour density. Spinal cord near-maximum dose was lower when using LBTE algorithm reporting Dm, which may result in higher spinal cord doses being delivered than with a convolution style algorithm. Spinal cord central dose was significantly lower with LBTE, potentially reflecting LBTE transport approximations.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3012, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia. .,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
| | - Jeremy Hughes
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3012, Australia
| | - Shankar Siva
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3012, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3012, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| |
Collapse
|
8
|
Kinkopf P, Modiri A, Yu KC, Yan Y, Mohindra P, Timmerman R, Sawant A, Vicente E. Virtual bronchoscopy-guided lung SAbR: dosimetric implications of using AAA versus Acuros XB to calculate dose in airways. Biomed Phys Eng Express 2021; 7. [PMID: 34488197 DOI: 10.1088/2057-1976/ac240c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022]
Abstract
In previous works, we showed that incorporating individual airways as organs-at-risk (OARs) in the treatment of lung stereotactic ablative radiotherapy (SAbR) patients potentially mitigates post-SAbR radiation injury. However, the performance of common clinical dose calculation algorithms in airways has not been thoroughly studied. Airways are of particular concern because their small size and the density differences they create have the potential to hinder dose calculation accuracy. To address this gap in knowledge, here we investigate dosimetric accuracy in airways of two commonly used dose calculation algorithms, the anisotropic analytical algorithm (AAA) and Acuros-XB (AXB), recreating clinical treatment plans on a cohort of four SAbR patients. A virtual bronchoscopy software was used to delineate 856 airways on a high-resolution breath-hold CT (BHCT) image acquired for each patient. The planning target volumes (PTVs) and standard thoracic OARs were contoured on an average CT (AVG) image over the breathing cycle. Conformal and intensity-modulated radiation therapy plans were recreated on the BHCT image and on the AVG image, for a total of four plan types per patient. Dose calculations were performed using AAA and AXB, and the differences in maximum and mean dose in each structure were calculated. The median differences in maximum dose among all airways were ≤0.3Gy in magnitude for all four plan types. With airways grouped by dose-to-structure or diameter, median dose differences were still ≤0.5Gy in magnitude, with no clear dependence on airway size. These results, along with our previous airway radiosensitivity works, suggest that dose differences between AAA and AXB correspond to an airway collapse variation ≤0.7% in magnitude. This variation in airway injury risk can be considered as not clinically relevant, and the use of either AAA or AXB is therefore appropriate when including patient airways as individual OARs so as to reduce risk of radiation-induced lung toxicity.
Collapse
Affiliation(s)
- P Kinkopf
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - A Modiri
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kun-Chang Yu
- Broncus Medical, Inc., San Jose, CA, United States of America
| | - Y Yan
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - P Mohindra
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - R Timmerman
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - A Sawant
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - E Vicente
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
9
|
Martin-Martin G, Walter S, Guibelalde E. Dose accuracy improvement on head and neck VMAT treatments by using the Acuros algorithm and accurate FFF beam calibration. ACTA ACUST UNITED AC 2021; 26:73-85. [PMID: 33948305 DOI: 10.5603/rpor.a2021.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
Background The purpose of this study was to assess dose accuracy improvement and dosimetric impact of switching from the anisotropic analytical algorithm (AA) to the Acuros XB algorithm (AXB) when performing an accurate beam calibration in head and neck (H&N) FFF-VMAT treatments. Materials and methods Twenty H&N cancer patients treated with FFF-VMAT techniques were included. Calculations were performed with the AA and AXB algorithm (dose-to-water - AXBw- and dose-to-medium - AXBm-). An accurate beam calibration was used for AXB calculations. Dose prescription to the tumour (PTV70) and at-risk-nodal region (PTV58.1) were 70 Gy and 58.1 Gy, respectively. A PTV70_bone including bony structures in PTV70 was contoured. Dose-volume parameters were compared between the algorithms. Statistical tests were used to analyze the differences in mean values and the correlation between compliance with the D95 > 95% requirement and occurrence of local recurrence. Results AA systematically overestimated the dose compared to AXB algorithm with mean dose differences within 1.3 Gy/2%, except for the PTV70_bone (2.2 Gy/3.2%). Dose differences were significantly higher for AXBm calculations when including accurate beam calibration (maximum dose differences up to 2.8 Gy/4.1% and 4.2 Gy/6.3% for PTV70 and PTV70_bone, respectively). 80% of AA-calculated plans did not meet the D95 > 95% requirement after recalculation with AXBm and accurate beam calibration. The reduction in D95 coverage in the tumour was not clinically relevant. Conclusions Using the AXBm algorithm and carefully reviewing the beam calibration procedure in H&N FFF-VMAT treatments ensures (1) dose accuracy increase by approximately 3%; (2) a consequent dose increase in targets; and (3) a dose reporting mode that is consistent with the trend of current algorithms.
Collapse
Affiliation(s)
- Guadalupe Martin-Martin
- Medical Physics and Radiation Protection Service, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Stefan Walter
- Department of Medicine and Public Health, Rey Juan Carlos University, Alcorcón, Spain
| | - Eduardo Guibelalde
- Medical Physics Group, Department of Radiology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Dosimetric impact of switching from AAA to Acuros dose-to-water and dose-to-medium for RapidArc plans of nasopharyngeal carcinomas. Cancer Radiother 2020; 24:842-850. [PMID: 33153875 DOI: 10.1016/j.canrad.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE This work aims to evaluate the dosimetric consequences of replacing the Anisotropic Analytical Algorithm (AAA) by Acuros XB (AXB), dose-to-water (Dw) or dose-to-medium (Dm), for RapidArc plans of nasopharyngeal carcinomas (NPC). MATERIALS AND METHODS Seventeen NPC plans created with AAA (v15.6) were recalculated with AXB (v15.6) Dw and Dm. The dose-volume parameters to the planning target volumes (PTV) and relevant organs at risk (OAR) were compared. The high dose PTV was divided into bone, air and tissue components and the comparison was performed for each of them. RESULTS AXB Dw revealed no significant differences in the PTVs compared to AAA. Lower values were observed to spinal cord, brainstem, oral cavity and parotids (0.5% to 2.3%), and higher values to cochleas (up to 5.4%) and mandible (up to 6.7%). AXB Dm predicted lower values than AAA for all PTVs and OARs (2.0% to 6.1%). For the bone PTV subvolume, AXB Dw and Dm predicted respectively higher (2.4%) and lower (2.2% to 3.4%) values. No significant differences were noted in air. AXB predicted lower values than AAA in soft tissues (0.4% to 1.6%). The largest difference was found to the mandible V60Gy parameter, with median differences of 6.7% for AXB Dw and -6.0% for AXB Dm. CONCLUSION Significant dose differences are expected when switching from AAA to AXB in NPC cases. The dose prescriptions and the tolerance limits for some OARs, especially those of high density, may need to be adjusted depending on the selected dose calculation algorithm and reporting mode.
Collapse
|
11
|
Kumar L, Kishore V, Bhushan M, Dewan A, Yadav G, Raman K, Kumar G, Ahmad I, Chufal KS, Gairola M. Impact of acuros XB algorithm in deep-inspiration breath-hold (DIBH) respiratory techniques used for the treatment of left breast cancer. Rep Pract Oncol Radiother 2020; 25:507-514. [PMID: 32494224 DOI: 10.1016/j.rpor.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/06/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
Aim To investigate the impact of Acuros XB (AXB) algorithm in the deep-inspiration breath-hold (DIBH) technique used for treatment of left sided breast cancer. Background AXB may estimate better lung toxicities and treatment outcome in DIBH. Materials and Methods Treatment plans were computed using the field-in-field technique for a 6 MV beam in two respiratory phases - free breathing (FB) and DIBH. The AXB-calculations were performed under identical beam setup and the same numbers of monitor units as used for AAA-calculation. Results Mean Hounsfield units (HU), mass density (g/cc) and relative electron density were -782.1 ± 24.8 and -883.5 ± 24.9; 0.196 ± 0.025 and 0.083 ± 0.032; 0.218 ± 0.025 and 0.117 ± 0.025 for the lung in the FB and DIBH respiratory phase, respectively. For a similar target coverage (p > 0.05) in the DIBH respiratory phase between the AXB and AAA algorithm, there was a slight increase in organ at risk (OAR) dose for AXB in comparison to AAA, except for mean dose to the ipsilateral lung. AAA predicts higher mean dose to the ipsilateral lung and lesser V20Gy for the ipsilateral and common lung in comparison to AXB. The differences in mean dose to the ipsilateral lung were 0.87 ± 2.66 % (p > 0.05) in FB, and 1.01 ± 1.07% (p < 0.05) in DIBH, in V20Gy the differences were 1.76 ± 0.83% and 1.71 ± 0.82% in FB (p < 0.05), 3.34 ± 1.15 % and 3.24 ± 1.17 % in DIBH (p < 0.05), for the ipsilateral and common lung, respectively. Conclusion For a similar target volume coverage, there were important differences between the AXB and AAA algorithm for low-density inhomogeneity medium present in the DIBH respiratory phase for left sided breast cancer patients. DIBH treatment in conjunction with AXB may result in better estimation of lung toxicities and treatment outcome.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Applied Science & Humanities, Dr. A.P.J Abdul Kalam Technical University, Lucknow, India.,Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Vimal Kishore
- Department of Applied Science & Humanities, Bundelkhand Institute of Engineering & Technology, Jhansi, India
| | - Manindra Bhushan
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Abhinav Dewan
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Girigesh Yadav
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Kothanda Raman
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Gourav Kumar
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Irfan Ahmad
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Kundan S Chufal
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| | - Munish Gairola
- Medical Physics Division & Radiation Oncology Department, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
| |
Collapse
|
12
|
Muñoz-Montplet C, Marruecos J, Buxó M, Jurado-Bruggeman D, Romera-Martínez I, Bueno M, Vilanova JC. Dosimetric impact of Acuros XB dose-to-water and dose-to-medium reporting modes on VMAT planning for head and neck cancer. Phys Med 2018; 55:107-115. [DOI: 10.1016/j.ejmp.2018.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022] Open
|
13
|
Robert C, Dumas I, Martinetti F, Chargari C, Haie-Meder C, Lefkopoulos D. Nouveaux algorithmes de calcul en curiethérapie pour les traitements par iridium 192. Cancer Radiother 2018; 22:319-325. [DOI: 10.1016/j.canrad.2017.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/15/2017] [Indexed: 10/16/2022]
|
14
|
Guebert A, Conroy L, Weppler S, Alghamdi M, Conway J, Harper L, Phan T, Olivotto IA, Smith WL, Quirk S. Clinical implementation of AXB from AAA for breast: Plan quality and subvolume analysis. J Appl Clin Med Phys 2018; 19:243-250. [PMID: 29696752 PMCID: PMC5978944 DOI: 10.1002/acm2.12329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/06/2017] [Accepted: 03/02/2018] [Indexed: 12/01/2022] Open
Abstract
Purpose Two dose calculation algorithms are available in Varian Eclipse software: Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB). Many Varian Eclipse‐based centers have access to AXB; however, a thorough understanding of how it will affect plan characteristics and, subsequently, clinical practice is necessary prior to implementation. We characterized the difference in breast plan quality between AXB and AAA for dissemination to clinicians during implementation. Methods Locoregional irradiation plans were created with AAA for 30 breast cancer patients with a prescription dose of 50 Gy to the breast and 45 Gy to the regional node, in 25 fractions. The internal mammary chain (IMCCTV) nodes were covered by 80% of the breast dose. AXB, both dose‐to‐water and dose‐to‐medium reporting, was used to recalculate plans while maintaining constant monitor units. Target coverage and organ‐at‐risk doses were compared between the two algorithms using dose–volume parameters. An analysis to assess location‐specific changes was performed by dividing the breast into nine subvolumes in the superior–inferior and left–right directions. Results There were minimal differences found between the AXB and AAA calculated plans. The median difference between AXB and AAA for breastCTVV95%, was <2.5%. For IMCCTV, the median differences V95%, and V80% were <5% and 0%, respectively; indicating IMCCTV coverage only decreased when marginally covered. Mean superficial dose increased by a median of 3.2 Gy. In the subvolume analysis, the medial subvolumes were “hotter” when recalculated with AXB and the lateral subvolumes “cooler” with AXB; however, all differences were within 2 Gy. Conclusion We observed minimal difference in magnitude and spatial distribution of dose when comparing the two algorithms. The largest observable differences occurred in superficial dose regions. Therefore, clinical implementation of AXB from AAA for breast radiotherapy is not expected to result in changes in clinical practice for prescribing or planning breast radiotherapy.
Collapse
Affiliation(s)
- Alexandra Guebert
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Leigh Conroy
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Sarah Weppler
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Majed Alghamdi
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Jessica Conway
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Lindsay Harper
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Tien Phan
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Ivo A Olivotto
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Wendy L Smith
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Sarah Quirk
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Kamaleldin M, Elsherbini NA, Elshemey WM. AAA and AXB algorithms for the treatment of nasopharyngeal carcinoma using IMRT and RapidArc techniques. Med Dosim 2018; 43:224-229. [DOI: 10.1016/j.meddos.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/20/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
|
16
|
Variation of the prescription dose using the analytical anisotropic algorithm in lung stereotactic body radiation therapy. Phys Med 2017; 38:98-104. [PMID: 28610704 DOI: 10.1016/j.ejmp.2017.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of the present investigation was to evaluate the dosimetric variation regarding the analytical anisotropic algorithm (AAA) relative to other algorithms in lung stereotactic body radiation therapy (SBRT). We conducted a multi-institutional study involving six institutions using a secondary check program and compared the AAA to the Acuros XB (AXB) in two institutions. METHODS All lung SBRT plans (128 patients) were generated using the AAA, pencil beam convolution with the Batho (PBC-B) and adaptive convolve (AC). All institutions used the same secondary check program (simple MU analysis [SMU]) implemented by a Clarkson-based dose calculation algorithm. Measurement was performed in a heterogeneous phantom to compare doses using the three different algorithms and the SMU for the measurements. A retrospective analysis was performed to compute the confidence limit (CL; mean±2SD) for the dose deviation between the AAA, PBC, AC and SMU. The variations between the AAA and AXB were evaluated in two institutions, then the CL was acquired. RESULTS In comparing the measurements, the AAA showed the largest systematic dose error (3%). In calculation comparisons, the CLs of the dose deviation were 8.7±9.9% (AAA), 4.2±3.9% (PBC-B) and 5.7±4.9% (AC). The CLs of the dose deviation between the AXB and the AAA were 1.8±1.5% and -0.1±4.4%, respectively, in the two institutions. CONCLUSIONS The CL of the AAA showed much larger variation than the other algorithms. Relative to the AXB, larger systematic and random deviations still appeared. Thus, care should be taken in the use of AAA for lung SBRT.
Collapse
|
17
|
Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review. Phys Med 2017; 36:126-139. [DOI: 10.1016/j.ejmp.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 02/14/2017] [Indexed: 12/25/2022] Open
|
18
|
van der Heyden B, Öllers M, Ritter A, Verhaegen F, van Elmpt W. Clinical evaluation of a novel CT image reconstruction algorithm for direct dose calculations. Phys Imaging Radiat Oncol 2017. [DOI: 10.1016/j.phro.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|