1
|
Ni J, Yao Q, Liu Y, Qi H. A Coarse-to-Fine Framework for Mid-Radiotherapy Head and Neck Cancer MRI Segmentation. HEAD AND NECK TUMOR SEGMENTATION FOR MR-GUIDED APPLICATIONS : FIRST MICCAI CHALLENGE, HNTS-MRG 2024, HELD IN CONJUNCTION WITH MICCAI 2024, MARRAKESH, MOROCCO, OCTOBER 17, 2024, PROCEEDINGS 2025; 15273:154-165. [PMID: 40260021 PMCID: PMC12010034 DOI: 10.1007/978-3-031-83274-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Radiotherapy is the preferred treatment modality for head and neck cancer (HNC). During the treatment, adaptive radiation therapy (ART) technology is commonly employed to account for changes in target volume and alterations in patient anatomy. This adaptability ensures that treatment remains precise and effective despite these physiological variations. Magnetic resonance imaging (MRI) provides higher-resolution soft tissue images, making it valuable in target delineation of HNC treatment. The delineation in ART should adhere to the same principles as those used in the initial delineation. Consequently, the contouring performed on MR images during ART should reference the earlier delineations for consistency and accuracy. To address this, we proposed a coarse-to-fine cascade framework based on 3D U-Net to segment mid-radiotherapy HNC from T2-weighted MRI. The model consists of two interconnected components: a coarse segmentation network and a fine segmentation network, both sharing the same architecture. In the coarse segmentation phase, different forms of prior information were used as input, including dilated pre-radiotherapy masks. In the fine segmentation phase, a resampling operation based on a bounding box focuses on the region of interest, refining the prediction with the mid-radiotherapy image to achieve the final segmentation. In our experiment, the final results were achieved with an aggregated Dice Similarity Coefficient (DSC) of 0.562, indicating that the prior information plays a crucial role in enhancing segmentation accuracy. (Team name: TNL_skd).
Collapse
Affiliation(s)
- Jing Ni
- ShanghaiTech University, Shanghai, China
| | - Qiulei Yao
- ShanghaiTech University, Shanghai, China
| | - Yanfei Liu
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Haikun Qi
- ShanghaiTech University, Shanghai, China
| |
Collapse
|
2
|
Nosrat F, Dede C, McCullum LB, Garcia R, Mohamed ASR, Scott JG, Bates JE, McDonald BA, Wahid KA, Naser MA, He R, Karagoz A, Moreno AC, van Dijk LV, Brock KK, Heukelom J, Hosseinian S, Hemmati M, Schaefer AJ, Fuller CD. Optimal Timing of Organs-at-Risk-Sparing Adaptive Radiation Therapy for Head- and-Neck Cancer under Re-planning Resource Constraints. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.01.24305163. [PMID: 39417124 PMCID: PMC11482873 DOI: 10.1101/2024.04.01.24305163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background and Purpose Prior work on adaptive organ-at-risk (OAR)-sparing radiation therapy has typically reported outcomes based on fixed-number or fixed-interval re-planning, which represent one-size-fits-all approaches and do not account for the variable progression of individual patients' toxicities. The purpose of this study was to determine the personalized optimal timing for re-planning in adaptive OAR-sparing radiation therapy, considering limited re-planning resources, for patients with head and neck cancer (HNC). Materials and Methods A novel Markov decision process (MDP) model was developed to determine optimal timing of re-planning based on the patient's expected toxicity, characterized by normal tissue complication probability (NTCP), for four toxicities. The MDP parameters were derived from a dataset comprising 52 HNC patients treated at the University of Texas MD Anderson Cancer Center between 2007 and 2013. Kernel density estimation was used to smooth the sample distributions. Optimal re-planning strategies were obtained when the permissible number of re-plans throughout the treatment was limited to 1, 2, and 3, respectively. Results The MDP (optimal) solution recommended re-planning when the difference between planned and actual NTCPs (ΔNTCP) was greater than or equal to 1%, 2%, 2%, and 4% at treatment fractions 10, 15, 20, and 25, respectively, exhibiting a temporally increasing pattern. The ΔNTCP thresholds remained constant across the number of re-planning allowances (1, 2, and 3). Conclusion In limited-resource settings that impeded high-frequency adaptations, ΔNTCP thresholds obtained from an MDP model could derive optimal timing of re-planning to minimize the likelihood of treatment toxicities.
Collapse
Affiliation(s)
- Fatemeh Nosrat
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Cem Dede
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucas B. McCullum
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Raul Garcia
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Abdallah S. R. Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob G. Scott
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland, OH, USA
| | - James E. Bates
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kareem A. Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed A. Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renjie He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aysenur Karagoz
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Amy C. Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisanne V. van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kristy K. Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jolien Heukelom
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | | | - Mehdi Hemmati
- School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK, USA
| | - Andrew J. Schaefer
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Clifton D. Fuller
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Dohopolski M, Visak J, Choi B, Meng B, Parsons D, Zhong X, Inam E, Avkshtol V, Moon D, Sher D, Lin MH. In silico evaluation and feasibility of near margin-less head and neck daily adaptive radiotherapy. Radiother Oncol 2024; 197:110178. [PMID: 38453056 DOI: 10.1016/j.radonc.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE We explore the potential dosimetric benefits of reducing treatment volumes through daily adaptive radiation therapy for head and neck cancer (HNC) patients using the Ethos system/Intelligent Optimizer Engine (IOE). We hypothesize reducing treatment volumes afforded by daily adaption will significantly reduce the dose to adjacent organs at risk. We also explore the capability of the Ethos IOE to accommodate this highly conformal approach in HNC radiation therapy. METHODS Ten HNC patients from a phase II trial were chosen, and their cone-beam CT (CBCT) scans were uploaded to the adaptive RT (ART) emulator. A new initial reference plan was generated using both a 1 mm and 5 mm planning target volume (PTV) expansion. Daily adaptive ART plans (1 mm) were simulated from the clinical CBCT taken every fifth fraction. Additionally, using physician-modified ART contours the larger 5 mm plan was recalculated on this recontoured on daily anatomy. Changes in target and OAR contours were measured using Dice coefficients as a surrogate of clinician effort. PTV coverage and organ-at-risk (OAR) doses were statistically compared, and the robustness of each ART plan was evaluated at fractions 5 and 35 to observe if OAR doses were within 3 Gy of pre-plan. RESULTS This study involved six patients with oropharynx and four with larynx cancer, totaling 70 adaptive fractions. The primary and nodal gross tumor volumes (GTV) required the most adjustments, with median Dice scores of 0.88 (range: 0.80-0.93) and 0.83 (range: 0.66-0.91), respectively. For the 5th and 35th fraction plans, 80 % of structures met robustness criteria (quartile 1-3: 67-100 % and 70-90 %). Adaptive planning improved median PTV V100% coverage for doses of 70 Gy (96 % vs. 95.6 %), 66.5 Gy (98.5 % vs. 76.5 %), and 63 Gy (98.9 % vs. 74.9 %) (p < 0.03). Implementing ART with total volume reduction yielded median dose reductions of 7-12 Gy to key organs-at-risk (OARs) like submandibular glands, parotids, oral cavity, and constrictors (p < 0.05). CONCLUSIONS The IOE enables feasible daily ART treatments with reduced margins while enhancing target coverage and reducing OAR doses for HNC patients. A phase II trial recently finished accrual and forthcoming analysis will determine if these dosimetric improvements correlate with improved patient-reported outcomes.
Collapse
Affiliation(s)
- Michael Dohopolski
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin Visak
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Byongsu Choi
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA; Department of Radiation Oncology, Yonsei Cancer Center, Seoul, Republic of Korea; Medical Physics and Biomedical Engineering Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boyu Meng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David Parsons
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xinran Zhong
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Enobong Inam
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vladimir Avkshtol
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dominic Moon
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David Sher
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Mu-Han Lin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Sreejeev AT, Joseph D, Krishnan AS, Pasricha R, Gupta S, Ahuja R, Sharma N, Sikdar D, Raut S, Sasi A, Gupta M. Weekly assessment of volumetric and dosimetric changes during volumetric modulated arc therapy of locally advanced head and neck carcinoma: Implications for adaptive radiation therapy-A prospective study. Head Neck 2024; 46:1547-1556. [PMID: 38436506 DOI: 10.1002/hed.27710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Chemoradiation in head and neck carcinoma (HNC) shows significant anatomical resulting in erroneous dose deposition in the target or the organ at risk (OAR). Adaptive radiotherapy (ART) can overcome this. Timing of significant target and OAR changes with dosimetric impact; thus, most suitable time and frequency of ART is unclear. METHODS This dosimetric study used prospective weekly non-contrast CT scans in 12 HNC patients (78 scans). OARs and TVs were manually contoured after registration with simulation scan. Dose overlay done on each scan without reoptimization. Dosimetric and volumetric variations assessed. RESULTS Commonest site was oropharynx. Gross Tumor Volume (GTV) reduced from 47.5 ± 19.2 to 17.8 ± 10.7 cc. Nodal GTV reduced from 15.7 ± 18.8 to 4.7 ± 7.1 cc. Parotid showed mean volume loss of 35%. T stage moderately correlated with GTV regression. CONCLUSION Maximum GTV changes occurred after 3 weeks. Best time to do single fixed interval ART would be by the end of 3 weeks.
Collapse
Affiliation(s)
| | - Deepa Joseph
- Department of Radiation Oncology, AIIMS, Rishikesh, India
| | - Ajay S Krishnan
- Department of Radiation Oncology, Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | | | - Sweety Gupta
- Department of Radiation Oncology, AIIMS, Rishikesh, India
| | - Rachit Ahuja
- Department of Radiation Oncology, Shri Mahant Indiresh Hospital, Dehradun, India
| | - Nidhi Sharma
- Department of Radiation Oncology, AIIMS, Rishikesh, India
| | | | - Sagar Raut
- Department of Radiation Oncology, AIIMS, Rishikesh, India
| | | | - Manoj Gupta
- Department of Radiation Oncology, AIIMS, Rishikesh, India
| |
Collapse
|
5
|
Simopoulou F, Kyrgias G, Georgakopoulos I, Avgousti R, Armpilia C, Skarlos P, Softa V, Theodorou K, Kouloulias V, Zygogianni A. Does adaptive radiotherapy for head and neck cancer favorably impact dosimetric, clinical, and toxicity outcomes?: A review. Medicine (Baltimore) 2024; 103:e38529. [PMID: 38941415 PMCID: PMC11466102 DOI: 10.1097/md.0000000000038529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024] Open
Abstract
PURPOSE The current review aims to summarize the international experience of the impact of adaptive radiotherapy on dosimetry and clinical and toxicity outcomes. Additionally, it might trigger Radiation Oncologists to use ART and evaluate whether ART improves target volume coverage and/or normal tissue sparing and, consequently, therapeutic results. MATERIALS AND METHODS We conducted an electronic literature search of PubMed/MEDLINE and ScienceDirect from January 2007 to January 2023. The search adhered to the PRISMA guidelines and employed keywords such as ART, HNC, parotid gland, and target volume. Furthermore, we examined the reference lists for studies pertinent to the present review. This study included both retrospective and prospective studies that were considered for inclusion. CONCLUSION ART replanning appears to be a sustainable strategy to minimize toxicity by improving normal tissue sparing. Furthermore, it can enhance target volume coverage by correctly determining the specific dose to be delivered to the tumor. In conclusion, this review confirmed that ART benefits dosimetric, clinical/therapeutic, and toxicity outcomes.
Collapse
Affiliation(s)
- Foteini Simopoulou
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| | - George Kyrgias
- Radiation Oncology Department, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Georgakopoulos
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| | - Rafaela Avgousti
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| | - Christina Armpilia
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| | - Pantelis Skarlos
- Radiation Oncology Department, Metropolitan Hospital, Piraeus, Greece
| | - Vasiliki Softa
- Medical Physics Department, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Kiki Theodorou
- Medical Physics Department, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| |
Collapse
|
6
|
Gan Y, Langendijk JA, Oldehinkel E, Lin Z, Both S, Brouwer CL. Optimal timing of re-planning for head and neck adaptive radiotherapy. Radiother Oncol 2024; 194:110145. [PMID: 38341093 DOI: 10.1016/j.radonc.2024.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND PURPOSE Adaptive radiotherapy (ART) relies on re-planning to correct treatment variations, but the optimal timing of re-planning to account for dose changes in head and neck organs at risk (OARs) is still under investigation. We aimed to find out the optimal timing of re-planning in head and neck ART. MATERIALS AND METHODS A total of 110 head and neck cancer patients were retrospectively enrolled. A semi auto-segmentation method was applied to obtain the weekly mean dose (Dmean) to OARs. The K-nearest-neighbour method was used for missing data imputation of weekly Dmean. A dose deviation map was built using the planning Dmean and weekly Dmean values and then used to simulate different ART scenarios consisting of 1 to 6 re-plannings. The difference between accumulated Dmean and planning Dmean before re-planning (ΔDmean_acc_noART) and after re-planning (ΔDmean_acc_ART) were evaluated and compared. RESULTS Among all the OARs, supraglottic showed the largest ΔDmean_acc_noART (1.23 ± 3.13 Gy) and most cases of ΔDmean_acc_noART > 3 Gy (26 patients). The 3rd week is suggested in the optimal timing of re-planning for 10 OARs. For all the organs except arytenoid, 2 re-plannings were able to guarantee the ΔDmean_acc_ART below 3 Gy while the average |ΔDmean_acc_ART| was below 1 Gy. ART scenarios of 2_4, 3_4, 3_5 (week of re-planning separated with "_") were able to guarantee ΔDmean_acc_ART of 99 % of patients below 3 Gy simultaneously for 19 OARs. CONCLUSIONS The optimal timing of re-planning was suggested for different organs at risk in head and neck adaptive radiotherapy. Generic scenarios of timing and frequency for re-planning can be applied to guarantee the increase of accumulated mean dose within 3 Gy simultaneously for multiple organs.
Collapse
Affiliation(s)
- Yong Gan
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands; Shantou University, Cancer Hospital of Shantou University Medical College, Department of Radiotherapy, China.
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Edwin Oldehinkel
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Zhixiong Lin
- Shantou University, Cancer Hospital of Shantou University Medical College, Department of Radiotherapy, China
| | - Stefan Both
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Charlotte L Brouwer
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| |
Collapse
|
7
|
Bäumer C, Frakulli R, Kohl J, Nagaraja S, Steinmeier T, Worawongsakul R, Timmermann B. Adaptive Proton Therapy of Pediatric Head and Neck Cases Using MRI-Based Synthetic CTs: Initial Experience of the Prospective KiAPT Study. Cancers (Basel) 2022; 14:cancers14112616. [PMID: 35681594 PMCID: PMC9179385 DOI: 10.3390/cancers14112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND AND PURPOSE Interfractional anatomical changes might affect the outcome of proton therapy (PT). We aimed to prospectively evaluate the role of Magnetic Resonance Imaging (MRI) based adaptive PT for children with tumors of the head and neck and base of skull. METHODS MRI verification images were acquired at half of the treatment course. A synthetic computed tomography (CT) image was created using this MRI and a deformable image registration (DIR) to the reference MRI. The methodology was verified with in-silico phantoms and validated using a clinical case with a shrinking cystic hygroma on the basis of dosimetric quantities of contoured structures. The dose distributions on the verification X-ray CT and on the synthetic CT were compared with a gamma-index test using global 2 mm/2% criteria. RESULTS Regarding the clinical validation case, the gamma-index pass rate was 98.3%. Eleven patients were included in the clinical study. The most common diagnosis was rhabdomyosarcoma (73%). Craniofacial tumor site was predominant in 64% of patients, followed by base of skull (18%). For one individual case the synthetic CT showed an increase in the median D2 and Dmax dose on the spinal cord from 20.5 GyRBE to 24.8 GyRBE and 14.7 GyRBE to 25.1 GyRBE, respectively. Otherwise, doses received by OARs remained relatively stable. Similarly, the target volume coverage seen by D95% and V95% remained unchanged. CONCLUSIONS The method of transferring anatomical changes from MRIs to a synthetic CTs was successfully implemented and validated with simple, commonly available tools. In the frame of our early results on a small cohort, no clinical relevant deterioration for neither PTV coverage nor an increased dose burden to OARs occurred. However, the study will be continued to identify a pediatric patient cohort, which benefits from adaptive treatment planning.
Collapse
Affiliation(s)
- Christian Bäumer
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
- Correspondence:
| | - Rezarta Frakulli
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Jessica Kohl
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
| | - Sindhu Nagaraja
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Theresa Steinmeier
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Rasin Worawongsakul
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Nakhon 73170, Thailand
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| |
Collapse
|
8
|
Ilangovan B, Venkatraman M, Balasundaram S. Volume changes during head-and-neck radiotherapy and its impact on the parotid dose - A single-institution observational study. J Cancer Res Ther 2020; 16:575-580. [PMID: 32719270 DOI: 10.4103/jcrt.jcrt_589_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Aims This study aims at assessing the volume changes that occur in the targets (gross tumor volume and planning target volume [PTV]) and the organs at risk in squamous cell carcinoma of the head and neck during radiotherapy and assessing the dose changes that occur as a result of them. Settings and Design This was a prospective observational study in a tertiary care center after obtaining the appropriate scientific and ethics committee clearance. Subjects and Methods Forty-five patients diagnosed with squamous cell carcinoma of the head and neck, who were treated with intensity-modulated radiotherapy in the time period from March 2018 to May 2019, were enrolled in the study. A planning computed tomography (CT) scan (CTplan) was done for all patients, followed by scans after 15 fractions (CT15) and after 25 fractions (CT25). The volume changes and the subsequent dose changes were assessed and recorded. Statistical Analysis Used Data entry was done in MS Excel spreadsheet. The continuous variables were expressed as mean + standard deviation. The comparison of normally distributed continuous variables was done by paired t-test. Data analysis was done by SPSS (Statistical Package for the Social Sciences) version 16.0. P < 0.05 was considered statistically significant. A multivariate linear regression model was constructed to study the correlation between mean dose to the parotid glands and the other variables. All statistical modeling and analysis were done using SAS (Statistical Analysis Software) version 9.4. Results Of the 45 patients, 25 were male and 20 were female. The majority of the patients had malignancies in the oral cavity (16) and hypopharynx (14). Most of them had Stage III/IV (AJCC v 8) disease (41). There were a 36% decrease in the PTV-high risk (PTV-HR) volume and a 6.05% decrease in the PTV-intermediate risk (PTV-IR) volume CT15. In CT25, the volume decrease in the PTV-HR and the PTV-IR was 47% and 9.06%, respectively. The parotid glands also underwent a reduction in their volume which has been quantified as 21.7% and 20.9% in the ipsilateral and contralateral parotids in CT15 and 36% and 33.6% in CT25, respectively. The D2 (dose received by 2% of the volume) and D98 (dose received by 98% of the volume) of the PTV-IR showed changes of +3.5% and -0.2% in CT15 and + 4.6% and -0.31% in CT25, respectively. The homogeneity index and conformity number of the PTV-IR changes by 0.03 and 0.08 in CT15 and by 0.04 and 0.12 in CT25, respectively. The mean dose to the ipsilateral parotid gland increased by 14% in CT15 and 19% in CT25. The mean dose to the contralateral parotid gland increased by 17% in CT15 and 25% in CT25. Conclusion The dose to the parotid glands increases as a result of the changes that occur during the course of radiation. The changes are significant after 15 fractions of radiation. A replanning at this juncture might be considered to reduce the dose to the parotid glands.
Collapse
Affiliation(s)
- Bhargavi Ilangovan
- Department of Radiotherapy, Apollo Cancer Institute, Chennai, Tamil Nadu, India
| | - Murali Venkatraman
- Department of Radiotherapy, Apollo Cancer Institute, Chennai, Tamil Nadu, India
| | | |
Collapse
|
9
|
[Adaptive radiotherapy for nasopharyngeal carcinomas: Where are we?]. Bull Cancer 2020; 107:565-573. [PMID: 32245602 DOI: 10.1016/j.bulcan.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022]
Abstract
Modern high-precision radiotherapy techniques have recently incorporated the notion of anatomical variations of the patient during treatment and have tried to adapt the treatment planning to them. Adaptive radiotherapy for nasopharyngeal tumors is starting to prove its benefit nowadays. His interest is constantly being evaluated. The variations encountered during the treatment are both geometric and dosimetric. They are represented by a reduction in the macroscopic tumors volume, a change in its position and a consequent dosimetric impact. The changes also concern organs at risk with a reduction of glandular structure volumes, and a different position which increases their doses. Delivered doses to noble structures (brainstem and spinal cord) may also increase. However, difficulties are encountered in its realization. There is a problem to perfectly reproduce the patient position during the second acquisition, which impacts the fusion quality between the two CT scans. This generates an imprecision in the definition of the same treatment isocentre on the second scanner. Also, there is a difficulty in accumulated doses calculation. The indication of adaptive radiotherapy remains a subject of controversy. It should be proposed for a subgroup of patients who could benefit from this new strategy. We present here an update on the state of the art of adaptive radiotherapy for nasopharyngeal cancer.
Collapse
|
10
|
Morgan HE, Sher DJ. Adaptive radiotherapy for head and neck cancer. CANCERS OF THE HEAD & NECK 2020; 5:1. [PMID: 31938572 PMCID: PMC6953291 DOI: 10.1186/s41199-019-0046-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Background Although there have been dramatic improvements in radiotherapy for head and neck squamous cell carcinoma (HNSCC), including robust intensity modulation and daily image guidance, these advances are not able to account for inherent structural and spatial changes that may occur during treatment. Many sources have reported volume reductions in the primary target, nodal volumes, and parotid glands over treatment, which may result in unintended dosimetric changes affecting the side effect profile and even efficacy of the treatment. Adaptive radiotherapy (ART) is an exciting treatment paradigm that has been developed to directly adjust for these changes. Main body Adaptive radiotherapy may be divided into two categories: anatomy-adapted (A-ART) and response-adapted ART (R-ART). Anatomy-adapted ART is the process of re-planning patients based on structural and spatial changes occurring over treatment, with the intent of reducing overdosage of sensitive structures such as the parotids, improving dose homogeneity, and preserving coverage of the target. In contrast, response-adapted ART is the process of re-planning patients based on response to treatment, such that the target and/or dose changes as a function of interim imaging during treatment, with the intent of dose escalating persistent disease and/or de-escalating surrounding normal tissue. The impact of R-ART on local control and toxicity outcomes is actively being investigated in several currently accruing trials. Conclusions Anatomy-adapted ART is a promising modality to improve rates of xerostomia and coverage in individuals who experience significant volumetric changes during radiation, while R-ART is currently being studied to assess its utility in either dose escalation of radioresistant disease, or de-intensification of surrounding normal tissue following treatment response. In this paper, we will review the existing literature and recent advances regarding A-ART and R-ART.
Collapse
Affiliation(s)
- Howard E Morgan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Rd, Dallas, TX 75390 USA
| | - David J Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Rd, Dallas, TX 75390 USA
| |
Collapse
|
11
|
Head and Neck Cancer Adaptive Radiation Therapy (ART): Conceptual Considerations for the Informed Clinician. Semin Radiat Oncol 2019; 29:258-273. [PMID: 31027643 DOI: 10.1016/j.semradonc.2019.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For nearly 2 decades, adaptive radiation therapy (ART) has been proposed as a method to account for changes in head and neck tumor and normal tissue to enhance therapeutic ratios. While technical advances in imaging, planning and delivery have allowed greater capacity for ART delivery, and a series of dosimetric explorations have consistently shown capacity for improvement, there remains a paucity of clinical trials demonstrating the utility of ART. Furthermore, while ad hoc implementation of head and neck ART is reported, systematic full-scale head and neck ART remains an as yet unreached reality. To some degree, this lack of scalability may be related to not only the complexity of ART, but also variability in the nomenclature and descriptions of what is encompassed by ART. Consequently, we present an overview of the history, current status, and recommendations for the future of ART, with an eye toward improving the clarity and description of head and neck ART for interested clinicians, noting practical considerations for implementation of an ART program or clinical trial. Process level considerations for ART are noted, reminding the reader that, paraphrasing the writer Elbert Hubbard, "Art is not a thing, it is a way."
Collapse
|
12
|
Soisson E, Guerrieri P, Balasubramanian S, Ahamad A, Moran JM, Joiner MC, Dominello M, Burmeister J. Three discipline collaborative radiation therapy special debate: All head and neck cancer patients with intact tumors/nodes should have scheduled adaptive replanning performed at least once during the course of radiotherapy. J Appl Clin Med Phys 2019; 20:7-11. [PMID: 30983132 PMCID: PMC6523017 DOI: 10.1002/acm2.12587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/07/2022] Open
Affiliation(s)
- Emilie Soisson
- Department of RadiologyUniversity of VermontBurlingtonVTUSA
- Medical Physics UnitMcGill UniversityMontrealQCCanada
| | | | | | - Anesa Ahamad
- Department of Radiation OncologyUniversity of Miami Miller School of MedicineSylvester Comprehensive Cancer CenterMiamiFLUSA
| | - Jean M. Moran
- Department of Radiation OncologyUniversity of MichiganAnn ArborMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|