1
|
Claridge Mackonis E, Stensmyr R, Poldy R, White P, Moutrie Z, Gorjiara T, Seymour E, Erven T, Hardcastle N, Haworth A. Improving motion management in radiation therapy: findings from a workshop and survey in Australia and New Zealand. Phys Eng Sci Med 2024; 47:813-820. [PMID: 38805104 PMCID: PMC11408578 DOI: 10.1007/s13246-024-01405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/09/2024] [Indexed: 05/29/2024]
Abstract
Motion management has become an integral part of radiation therapy. Multiple approaches to motion management have been reported in the literature. To allow the sharing of experiences on current practice and emerging technology, the University of Sydney and the New South Wales/Australian Capital Territory branch of the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) held a two-day motion management workshop. To inform the workshop program, participants were invited to complete a survey prior to the workshop on current use of motion management techniques and their opinion on the effectiveness of each approach. A post-workshop survey was also conducted, designed to capture changes in opinion as a result of workshop participation. The online workshop was the most well attended ever hosted by the ACPSEM, with over 300 participants and a response to the pre-workshop survey was received from at least 60% of the radiation therapy centres in Australia and New Zealand. Motion management is extensively used in the region with use of deep inspiration breath-hold (DIBH) reported by 98% of centres for left-sided breast treatments and 91% for at least some right-sided breast treatments. Surface guided radiation therapy (SGRT) was the most popular session at the workshop and survey results showed that the use of SGRT is likely to increase. The workshop provided an excellent opportunity for the exchange of knowledge and experience, with most survey respondents indicating that their participation would lead to improvements in the quality of delivery of treatments at their centres.
Collapse
Affiliation(s)
| | | | - Rachel Poldy
- Canberra Region Cancer Centre, Canberra, Australia
| | - Paul White
- South Eastern Sydney LHD, Randwick, Australia
| | - Zoë Moutrie
- South Western Sydney Cancer Services, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Sydney, Australia
- South Western Sydney Clinical School, University of NSW, Liverpool, NSW, Australia
| | | | | | - Tania Erven
- South Western Sydney Cancer Services, Sydney, NSW, Australia
| | - Nicholas Hardcastle
- Peter MacCallum Cancer Centres, Melbourne, Australia
- Institute of Medical Physics, University of Sydney, Camperdown, Australia
| | - Annette Haworth
- Institute of Medical Physics, University of Sydney, Camperdown, Australia
| |
Collapse
|
2
|
Sengupta C, Nguyen DT, Moodie T, Mason D, Luo J, Causer T, Liu SF, Brown E, Inskip L, Hazem M, Chao M, Wang T, Lee YY, van Gysen K, Sullivan E, Cosgriff E, Ramachandran P, Poulsen P, Booth J, O'Brien R, Greer P, Keall P. The first clinical implementation of real-time 6 degree-of-freedom image-guided radiotherapy for liver SABR patients. Radiother Oncol 2024; 190:110031. [PMID: 38008417 DOI: 10.1016/j.radonc.2023.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE Multiple survey results have identified a demand for improved motion management for liver cancer IGRT. Until now, real-time IGRT for liver has been the domain of dedicated and expensive cancer radiotherapy systems. The purpose of this study was to clinically implement and characterise the performance of a novel real-time 6 degree-of-freedom (DoF) IGRT system, Kilovoltage Intrafraction Monitoring (KIM) for liver SABR patients. METHODS/MATERIALS The KIM technology segmented gold fiducial markers in intra-fraction x-ray images as a surrogate for the liver tumour and converted the 2D segmented marker positions into a real-time 6DoF tumour position. Fifteen liver SABR patients were recruited and treated with KIM combined with external surrogate guidance at three radiotherapy centres in the TROG 17.03 LARK multi-institutional prospective clinical trial. Patients were either treated in breath-hold or in free breathing using the gating method. The KIM localisation accuracy and dosimetric accuracy achieved with KIM + external surrogate were measured and the results were compared to those with the estimated external surrogate alone. RESULTS The KIM localisation accuracy was 0.2±0.9 mm (left-right), 0.3±0.6 mm (superior-inferior) and 1.2±0.8 mm (anterior-posterior) for translations and -0.1◦±0.8◦ (left-right), 0.6◦±1.2◦ (superior-inferior) and 0.1◦±0.9◦ (anterior-posterior) for rotations. The cumulative dose to the GTV with KIM + external surrogate was always within 5% of the plan. In 2 out of 15 patients, >5% dose error would have occurred to the GTV and an organ-at-risk with external surrogate alone. CONCLUSIONS This work demonstrates that real-time 6DoF IGRT for liver can be implemented on standard radiotherapy systems to improve treatment accuracy and safety. The observations made during the treatments highlight the potential false assurance of using traditional external surrogates to assess tumour motion in patients and the need for ongoing improvement of IGRT technologies.
Collapse
Affiliation(s)
| | | | | | - Daniel Mason
- Nepean Cancer & Wellness Centre, Nepean Hospital, Australia
| | - Jianjie Luo
- Nepean Cancer & Wellness Centre, Nepean Hospital, Australia
| | - Trent Causer
- Nepean Cancer & Wellness Centre, Nepean Hospital, Australia
| | - Sau Fan Liu
- Department of Radiation Oncology, Princess Alexandra Hospital, Australia
| | - Elizabeth Brown
- Department of Radiation Oncology, Princess Alexandra Hospital, Australia
| | | | - Maryam Hazem
- Nepean Cancer & Wellness Centre, Nepean Hospital, Australia
| | - Menglei Chao
- Nepean Cancer & Wellness Centre, Nepean Hospital, Australia
| | - Tim Wang
- Crown Princess Mary Cancer Centre, Australia
| | - Yoo Y Lee
- Department of Radiation Oncology, Princess Alexandra Hospital, Australia
| | | | | | | | | | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Australia; Institute of Medical Physics, The University of Sydney, Australia
| | - Ricky O'Brien
- Image X Institute, The University of Sydney, Australia; RMIT University, Australia
| | - Peter Greer
- Department of Radiation Oncology, Calvary Mater Newcastle, Australia
| | - Paul Keall
- Image X Institute, The University of Sydney, Australia
| |
Collapse
|
3
|
Yalvac B, Reulens N, Reniers B. Early results of a remote dosimetry audit program for lung stereotactic body radiation therapy. Phys Imaging Radiat Oncol 2024; 29:100544. [PMID: 38327761 PMCID: PMC10848021 DOI: 10.1016/j.phro.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Background and purpose A dosimetry audit program based on alanine electron paramagnetic resonance (EPR) and radiochromic film dosimetry, may be a valuable tool for monitoring and improving the quality of lung stereotactic body radiotherapy (SBRT). The aim of this study was to report the initial, independent assessment of the dosimetric accuracy for lung SBRT practice using these dosimeters in combination with a novel phantom design. Materials and Methods The audit service was a remote audit program performed on a commercial lung phantom preloaded with film and alanine detectors. An alanine pellet was placed in the centre of the target simulated using silicone in a 3D-printed mould. Large film detectors were placed coronally through the target and the lung/tissue interface and analysed using gamma analysis. The beam output was always checked on the same day with alanine dosimetry in water. We audited 29 plans from 14 centres up to now. Results For the alanine results 28/29 plans were within 5 % with 19/29 plans being within 3 %. The passing rates were > 95 % for the film through the target for 27/29 plans and 17/29 plans for the film at the lung/tissue interface. For three plans the passing rate was < 90 % for the film on top of the lungs. Conclusions The preliminary results were very satisfactory for both detectors. The high passing rates for the film in the interface region indicate good performance of the treatment planning systems. The phantom design was robust and performed well on several treatment systems.
Collapse
Affiliation(s)
- Burak Yalvac
- Universiteit Hasselt, CMK, NuTeC, Diepenbeek, Belgium
| | | | | |
Collapse
|
4
|
Shaw M, Lye J, Alves A, Lehmann J, Sanagou M, Geso M, Brown R. Measuring dose in lung identifies peripheral tumour dose inaccuracy in SBRT audit. Phys Med 2023; 112:102632. [PMID: 37406592 DOI: 10.1016/j.ejmp.2023.102632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
PURPOSE Stereotactic Body Radiotherapy (SBRT) for lung tumours has become a mainstay of clinical practice worldwide. Measurements in anthropomorphic phantoms enable verification of patient dose in clinically realistic scenarios. Correction factors for reporting dose to the tissue equivalent materials in a lung phantom are presented in the context of a national dosimetry audit for SBRT. Analysis of dosimetry audit results is performed showing inaccuracies of common dose calculation algorithms in soft tissue lung target, inhale lung material and at tissue interfaces. METHODS Monte Carlo based simulation of correction factors for detectors in non-water tissue was performed for the soft tissue lung target and inhale lung materials of a modified CIRS SBRT thorax phantom. The corrections were determined for Gafchromic EBT3 Film and PTW 60019 microDiamond detectors used for measurements of 168 SBRT lung plans in an end-to-end dosimetry audit. Corrections were derived for dose to medium (Dm,m) and dose to water (Dw,w) scenarios. RESULTS Correction factors were up to -3.4% and 9.2% for in field and out of field lung respectively. Overall, application of the correction factors improved the measurement-to-plan dose discrepancy. For the soft tissue lung target, agreement between planned and measured dose was within average of 3% for both film and microDiamond measurements. CONCLUSIONS The correction factors developed for this work are provided for clinical users to apply to commissioning measurements using a commercially available thorax phantom where inhomogeneity is present. The end-to-end dosimetry audit demonstrates dose calculation algorithms can underestimate dose at lung tumour/lung tissue interfaces by an average of 2-5%.
Collapse
Affiliation(s)
- Maddison Shaw
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Jessica Lye
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia; Olivia Newton John Cancer Wellness and Research Centre, Austin Health, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| | - Joerg Lehmann
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, Australia; School of Science, RMIT University, Melbourne, Australia; School of Mathematical and Physical Sciences, University of Newcastle, Australia; Institute of Medical Physics, University of Sydney, Australia
| | - Masoumeh Sanagou
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| | - Moshi Geso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| |
Collapse
|
5
|
Pudsey L, Haworth A, White P, Moutrie Z, Jonker B, Foote M, Poder J. Current status of intra-cranial stereotactic radiotherapy and stereotactic radiosurgery in Australia and New Zealand: key considerations from a workshop and surveys. Phys Eng Sci Med 2022; 45:251-259. [PMID: 35113342 PMCID: PMC8901507 DOI: 10.1007/s13246-022-01108-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022]
Abstract
Recently, there has been increased interest worldwide in the use of conventional linear accelerator (linac)-based systems for delivery of stereotactic radiosurgery/radiotherapy (SRS/SRT) contrasting with historical delivery in specialised clinics with dedicated equipment. In order to gain an understanding and define the current status of SRS/SRT delivery in Australia and New Zealand (ANZ) we conducted surveys and provided a single-day workshop. Prior to the workshop ANZ medical physicists were invited to complete two surveys: a departmental survey regarding SRS/SRT practises and equipment; and an individual survey regarding opinions on current and future SRS/SRT practices. At the workshop conclusion, attendees completed a second opinion-based survey. Workshop discussion and survey data were utilised to identify areas of consensus, and areas where a community consensus was unclear. The workshop was held on the 8th Sept 2020 virtually due to pandemic-related travel restrictions and was attended by 238 radiation oncology medical physicists from 39 departments. The departmental survey received 32 responses; a further 89 and 142 responses were received to the pre-workshop and post-workshop surveys respectively. Workshop discussion indicated a consensus that for a department to offer an SRS/SRT service, a minimum case load should be considered depending on availability of training, peer-review, resources and equipment. It was suggested this service may be limited to brain metastases only, with less common indications reserved for departments with comprehensive SRS/SRT programs. Whilst most centres showed consensus with treatment delivery techniques and image guidance, opinions varied on the minimum target diameter and treatment margin that should be applied.
Collapse
Affiliation(s)
- Lauren Pudsey
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
| | - Paul White
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Zoe Moutrie
- Department of Radiation Oncology, Mater Hospital, GenesisCare, Crows Nest, Sydney, NSW, Australia
| | - Benjamin Jonker
- RPA Institute of Academic Surgery, University of Sydney, Sydney, Australia
| | - Matthew Foote
- University of Queensland, Princess Alexandra Hospital, ICON Cancer Care Queensland, Southport, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
- St George Hospital Cancer Care Centre, Kogarah, NSW, Australia.
| |
Collapse
|
6
|
Charles PH, Crowe SB, Kairn T. Technical Note: Small field dose correction factors for radiochromic film in lung phantoms. Med Phys 2021; 48:2667-2672. [PMID: 33619729 DOI: 10.1002/mp.14799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Radiochromic film has been established as a detector that can be used without the need for perturbation correction factors for small field dosimetry in water. However, perturbation factors in low density media such as lung have yet to be published. This study calculated the factors required to account for the perturbation of radiochromic film when used for small field dosimetry in lung equivalent material. METHOD Monte Carlo simulations were used to calculate dose to Gafchromic EBT3 film when placed inside a lung phantom. The beam simulated had a nominal energy of 6 MV and the field sizes simulated ranged from 10 × 10 mm2 to 30 × 30 mm2 . The lung density simulated was varied between 0.2 and 0.3 g/cm3 . Each simulation was repeated with the film replaced by lung material (the same as the surrounding medium), and the required correction factors for film dosimetry in lung ( D M e d , Q D D e t , Q ) were calculated by dividing the dose in lung by the dose in film. RESULTS For field sizes 30 × 30 mm2 and larger, no correction factors were required. At a 20 × 20 mm2 field size, small corrections were required, but were within the approximate accuracy of film dosimetry (~2%). For a 10 × 10 mm2 field size, significant correction factors need to be applied (0.935 for lung density of 0.20 g/cm3 to 0.963 for lung density of 0.30 g/cm3 ). The values lower than one mean that the film is over-responding. At the "upstream" lung-water interface the correction factors were close to unity; while at the downstream interface the corrections required were marginally smaller to those at the center of lung. One centimeter or more away from the interfaces, the correction factor did not vary as a function distance from the interface (in the beam direction). Away from the central axis (perpendicular to the beam direction), the correction factors increased slightly (away from unity) as a function of off-axis distance, before abruptly changing direction at the penumbra, with the film actually under-responding by ~10% outside the field edges. CONCLUSION Accurate dosimetry of very small fields (15 × 15 mm2 or smaller) using radiochromic film requires correction factors for the perturbation of the film on the surrounding lung material. This correction factor was as high as 6.5% for a 10 × 10 mm2 field size and a density of 0.2 g/cm3 . This will increase if either the density or the field size decrease further. This correction factor does not vary as a function of depth in lung once charged particle equilibrium is established.
Collapse
Affiliation(s)
- Paul H Charles
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Scott B Crowe
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| | - Tanya Kairn
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| |
Collapse
|