1
|
Hariyanto AP, Budiarti NT, Suprijanto, Ng KH, Haryanto F, Endarko. Evaluation of physical properties and image of polyvinyl chloride as breast tissue equivalence for dual-modality (mammography and ultrasound). Phys Eng Sci Med 2023; 46:1175-1185. [PMID: 37253939 DOI: 10.1007/s13246-023-01283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
TMP is gradually becoming a fundamental element for quality assurance and control in ionizing and non-ionizing radiation imaging modalities as well as in the development of different techniques. This study aimed to evaluate and obtain polyvinyl chloride tissue mimicking material for dual-modality breast phantoms in mammography and ultrasound. Breast tissue equivalence was evaluated based on X-ray attenuation properties, speed of sound, attenuation, and acoustic impedance. There are six samples of PVC-plasticizer material with variations of PVC concentration and additives. The evaluation of X-ray attenuation was carried out using mammography from 23 to 35 kV, while the acoustic properties were assessed with mode A ultrasound and a transducer frequency of 5 MHz. A breast phantom was created from TMP material with tissue equivalence and was then evaluated using mammography as well as ultrasound to analyze its image quality. The results showed that samples A (PVC 5%, DOP 95%), B (PVC 7%, DOP 93%), C (PVC 10%, DOP 90%), E (PVC 7%, DOP 90%, graphite 3%), and F (PVC 7%, DOP 90%, silicone oil 3%) have the closest equivalent to the ACR breast phantom material with a different range of 0.01-1.39 in the 23-35 kV range. Based on the evaluation of the acoustic properties of ultrasound, A had high similarity to fat tissue with a difference of 0.03 (dB cm- 1 MHz- 1) and 0.07 (106 kg m- 2 s- 1), while B was close to the glandular tissue with a difference of 9.2 m s- 1. Multilayer breast phantom images' results showed gray levels in mammography and ultrasound modalities. Therefore, this study succeeded in establishing TMP material for mammography and ultrasound. It can also be used for simple quality assurance and control programs.
Collapse
Affiliation(s)
- Aditya Prayugo Hariyanto
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia
| | - Nurhanifa Tri Budiarti
- Medical Physicist of Radiology Installation, Gambiran General Hospital, Kediri, East Java, 64133, Indonesia
| | - Suprijanto
- Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Labtek VI, 40132, Bandung, Indonesia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Freddy Haryanto
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10, 40116, Bandung, Indonesia
| | - Endarko
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia.
| |
Collapse
|
2
|
Takane Y, Sato K, Kageyama R, Takano H, Kayano S. Accuracy of virtual non-contrast images with different algorithms in dual-energy computed tomography. Radiol Phys Technol 2022; 15:234-244. [PMID: 35925476 DOI: 10.1007/s12194-022-00668-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022]
Abstract
We investigated the accuracy of the computed tomography (CT) numbers of virtual non-contrast (VNC) images for two different material decomposition algorithms using the same image data for different diluted contrast agent concentrations. A container filled with contrast agents was inserted into a cylindrical phantom and scanned with dual-energy protocols (80/Sn140 kV, 100/Sn140 kV) using a dual-source CT. VNC images were generated by the 2-material decomposition (MD) algorithm using the energy of each tube voltage and the linear attenuation coefficient, calculated from the theoretical spectral curve of the agent and the CT number of the image, respectively. Furthermore, VNC images using 3-material decomposition (3-MD) algorithm were produced by applying LiverVNC, an analysis parameter implemented in the scanner. The robustness of both the algorithms was verified by investigating the CT numbers of the agents in the VNC. The closer the CT number is to 0 HU, the more robust the algorithm. Without beam-hardening correction, the CT numbers increased with an increase in concentration in both the algorithms, maximal at 50 mg/ml concentration, with CT numbers of 38 HU for 2-MD, 86 HU for 3-MD. With correction, CT numbers were ± 10 HU or less for both the algorithms up to 30 mg/ml concentration, whereas, for concentrations above 40 mg/ml, the maximal averaged CT number was 12 HU for 2-MD, 22 HU for 3-MD. For both the algorithms, the accuracy of the CT numbers was maintained in the low-concentration range; parameter adjustment was necessary to maintain the accuracy at concentrations higher than clinically expected.
Collapse
Affiliation(s)
- Yumi Takane
- Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Kazuhiro Sato
- Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ryota Kageyama
- Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hirokazu Takano
- Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shingo Kayano
- Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
3
|
Sato K, Sato C, Takahashi A, Takano H, Kayano S, Ishiguro A, Takane Y, Kaneta T. Accuracy of virtual monochromatic images generated by the decomposition of photoelectric absorption and Compton scatter in dual-energy computed tomography. Phys Eng Sci Med 2022; 45:239-249. [PMID: 35089524 DOI: 10.1007/s13246-022-01107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
The decomposition of the linear attenuation coefficient into photoelectric absorption and Compton scattering provides virtual monochromatic images (VMIs). The accuracy of the computed tomography (CT) number of VMI, which is obtained by decomposing the linear attenuation coefficient into photoelectric absorption and Compton scattering, was verified in the energy range of 40-200 keV. The possibility of improving the accuracy of CT numbers by using pre-energy-calibrated images as input was also investigated. The VMIs were generated in two groups of images: (i) dual-energy scanned images and (ii) high- and low-energy images generated by two-material decomposition (i.e., pre-energy-calibrated images). The object for analysis was solid iodine rods inserted in the center of the multi-energy CT phantom. The VMIs were generated from the dual-energy scanned images and pre-energy-calibrated images, and the theoretical and measured CT numbers of solid iodine rods were compared. Furthermore, the absolute error (AE) and relative error (RE) were calculated. With both images, the accuracy of the CT numbers was extremely high for regions close to the high- and low-tube-voltage X-ray energy or the high and low energy of the input images. By using the pre-energy-calibrated images, the maximum AE was reduced from 133 to 96 HU at an energy of 40 keV. Similarly, the maximum RE was reduced from 325 to 50% at an energy of 200 keV. The pre-energy-calibrated images reduced the overall error of the CT numbers and controlled the energy region where accurate CT numbers could be obtained.
Collapse
Affiliation(s)
- Kazuhiro Sato
- Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Chifumi Sato
- Tohoku University School of Health Sciences, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ayami Takahashi
- Tohoku University School of Health Sciences, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hirokazu Takano
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shingo Kayano
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ayana Ishiguro
- Department of Radiology, Sendai Open Hospital, 5‑22‑1 Tsurugaya, Miyagino‑ku, Sendai, Miyagi, 983‑0824, Japan
| | - Yumi Takane
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomohiro Kaneta
- Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
4
|
Kayano S. [5. Principles of Dual-energy CT]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:515-523. [PMID: 34011795 DOI: 10.6009/jjrt.2021_jsrt_77.5.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shingo Kayano
- Department of Radiological Technology, Tohoku University Hospital
| |
Collapse
|