1
|
Slezina MP, Korostyleva TV, Slavokhotova AA, Istomina EA, Shcherbakova LA, Pukhalskij VA, Odintsova TI. Genes Encoding Hevein-Like Antimicrobial Peptides from Elytrigia repens (L.) Desv. ex Nevski. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418100149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Yang Y, Fan X, Wang L, Zhang HQ, Sha LN, Wang Y, Kang HY, Zeng J, Yu XF, Zhou YH. Phylogeny and maternal donors of Elytrigia Desv. sensu lato (Triticeae; Poaceae) inferred from nuclear internal-transcribed spacer and trnL-F sequences. BMC PLANT BIOLOGY 2017; 17:207. [PMID: 29157213 PMCID: PMC5697114 DOI: 10.1186/s12870-017-1163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Elytrigia Desv. is a genus with a varied array of morphology, cytology, ecology, and distribution in Triticeae. Classification and systematic position of Elytrigia remain controversial. We used nuclear internal-transcribed spacer (nrITS) sequences and chloroplast trnL-F region to study the relationships of phylogenetic and maternal genome donor of Elytrigia Desv. sensu lato. RESULTS (1) E, F, P, St, and W genomes bear close relationship with one another and are distant from H and Ns genomes. Ee and Eb are homoeologous. (2) In ESt genome species, E genome is the origin of diploid Elytrigia species with E genome, St genome is the origin of Pseudoroegneria. (3) Diploid species Et. elongata were differentiated. (4) Et. stipifolia and Et. varnensis sequences are diverse based on nrITS data. (5) Et. lolioides contains St and H genomes and belongs to Elymus s. l. (6) E genome diploid species in Elytrigia serve as maternal donors of E genome for Et. nodosa (PI547344), Et. farcta, Et. pontica, Et. pycnantha, Et. scirpea, and Et. scythica. At least two species act as maternal donor of allopolyploids (ESt and EStP genomes). CONCLUSIONS Our results suggested that Elytrigia s. l. species contain different genomes, which should be divided into different genera. However, the genomes of Elytrigia species had close relationships with one another. Diploid species were differentiated, because of introgression and different geographical sources. The results also suggested that the same species and the same genomes of different species have different maternal donor. Further study of molecular biology and cytology could facilitate the evaluation of our results of phylogenetic in a more specific and accurate way.
Collapse
Affiliation(s)
- Yan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009 Sichuan People’s Republic of China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
3
|
Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex. PLoS One 2017; 12:e0169992. [PMID: 28125648 PMCID: PMC5268433 DOI: 10.1371/journal.pone.0169992] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
The genera Erianthus and Miscanthus, both members of the Saccharum complex, are of interest as potential resources for sugarcane improvement and as bioenergy crops. Recent studies have mainly focused on the conservation and use of wild accessions of these genera as breeding materials. However, the sequence data are limited, which hampers the studies of phylogenetic relationships, population structure, and evolution of these grasses. Here, we determined the complete chloroplast genome sequences of Erianthus arundinaceus and Miscanthus sinensis by using 454 GS FLX pyrosequencing and Sanger sequencing. Alignment of the E. arundinaceus and M. sinensis chloroplast genome sequences with the known sequence of Saccharum officinarum demonstrated a high degree of conservation in gene content and order. Using the data sets of 76 chloroplast protein-coding genes, we performed phylogenetic analysis in 40 taxa including E. arundinaceus and M. sinensis. Our results show that S. officinarum is more closely related to M. sinensis than to E. arundinaceus. We estimated that E. arundinaceus diverged from the subtribe Sorghinae before the divergence of Sorghum bicolor and the common ancestor of S. officinarum and M. sinensis. This is the first report of the phylogenetic and evolutionary relationships inferred from maternally inherited variation in the Saccharum complex. Our study provides an important framework for understanding the phylogenetic relatedness of the economically important genera Erianthus, Miscanthus, and Saccharum.
Collapse
|
4
|
Abstract
The genome of spinach single chromosome complement is about 1000 Mbp, which is the model material to study the molecular mechanisms of plant sex differentiation. The cytological study showed that the biggest spinach chromosome (chromosome 1) was taken as spinach sex chromosome. It had three alleles of sex-related X,X(m) and Y. Many researchers have been trying to clone the sex-determining genes and investigated the molecular mechanism of spinach sex differentiation. However,there are no successful cloned reports about these genes. A new technology combining chromosome microdissection with hybridization-specific amplification (HSA) was adopted. The spinach Y chromosome degenerate oligonucleotide primed-PCR (DOP-PCR) products were hybridized with cDNA of the male spinach flowers in florescence. The female spinach genome was taken as blocker and cDNA library specifically expressed in Y chromosome was constructed. Moreover, expressed sequence tag (EST) sequences in cDNA library were cloned, sequenced and bioinformatics was analysed. There were 63 valid EST sequences obtained in this study. The fragment size was between 53 and 486 bp. BLASTn homologous alignment indicated that 12 EST sequences had homologous sequences of nucleic acids, the rest were new sequences. BLASTx homologous alignment indicated that 16 EST sequences had homologous protein-encoding nucleic acid sequence. The spinach Y chromosome-specific EST sequences laid the foundation for cloning the functional genes, specifically expressed in spinach Y chromosome. Meanwhile, the establishment of the technology system in the research provided a reference for rapid cloning of other biological sex chromosome-specific EST sequences.
Collapse
|
5
|
Dong ZZ, Fan X, Sha LN, Wang Y, Zeng J, Kang HY, Zhang HQ, Wang XL, Zhang L, Ding CB, Yang RW, Zhou YH. Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. BMC PLANT BIOLOGY 2015; 15:179. [PMID: 26164196 PMCID: PMC4499217 DOI: 10.1186/s12870-015-0517-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND Hybridization and polyploidization can be major mechanisms for plant evolution and speciation. Thus, the process of polyploidization and evolutionary history of polyploids is of widespread interest. The species in Elymus L. sensu lato are allopolyploids that share a common St genome from Pseudoroegneria in different combinations with H, Y, P, and W genomes. But how the St genome evolved in the Elymus s. l. during the hybridization and polyploidization events remains unclear. We used nuclear and chloroplast DNA-based phylogenetic analyses to shed some light on this process. RESULTS The Maximum likelihood (ML) tree based on nuclear ribosomal internal transcribed spacer region (nrITS) data showed that the Pseudoroegneria, Hordeum and Agropyron species served as the St, H and P genome diploid ancestors, respectively, for the Elymus s. l. polyploids. The ML tree for the chloroplast genes (matK and the intergenic region of trnH-psbA) suggests that the Pseudoroegneria served as the maternal donor of the St genome for Elymus s. l. Furthermore, it suggested that Pseudoroegneria species from Central Asia and Europe were more ancient than those from North America. The molecular evolution in the St genome appeared to be non-random following the polyploidy event with a departure from the equilibrium neutral model due to a genetic bottleneck caused by recent polyploidization. CONCLUSION Our results suggest the ancient common maternal ancestral genome in Elymus s. l. is the St genome from Pseudoroegneria. The evolutionary differentiation of the St genome in Elymus s. l. after rise of this group may have multiple causes, including hybridization and polyploidization. They also suggest that E. tangutorum should be treated as C. dahurica var. tangutorum, and E. breviaristatus should be transferred into Campeiostachys. We hypothesized that the Elymus s. l. species origined in Central Asia and Europe, then spread to North America. Further study of intraspecific variation may help us evaluate our phylogenetic results in greater detail and with more certainty.
Collapse
Affiliation(s)
- Zhen-Zhen Dong
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| | - Jian Zeng
- College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| | - Xiao-Li Wang
- College of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China.
| | - Li Zhang
- College of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China.
| | - Chun-Bang Ding
- College of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China.
| | - Rui-Wu Yang
- College of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China.
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Dong ZZ, Fan X, Sha LN, Zeng J, Wang Y, Chen Q, Kang HY, Zhang HQ, Zhou YH. Phylogeny and molecular evolution of the rbcL gene of St genome in Elymus sensu lato (Poaceae: Triticeae). BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|