1
|
Jung MH, Chico V, Ciordia S, Mena MC, Jung SJ, Ortega-Villaizan MDM. The Megalocytivirus RBIV Induces Apoptosis and MHC Class I Presentation in Rock Bream (Oplegnathus fasciatus) Red Blood Cells. Front Immunol 2019; 10:160. [PMID: 30886611 PMCID: PMC6410659 DOI: 10.3389/fimmu.2019.00160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023] Open
Abstract
Rock bream iridovirus (RBIV) causes severe mass mortality in Korean rock bream (Oplegnathus fasciatus) populations. To date, immune defense mechanisms of rock bream against RBIV are unclear. While red blood cells (RBCs) are known to be involved in the immune response against viral infections, the participation of rock bream RBCs in the immune response against RBIV has not been studied yet. In this study, we examined induction of the immune response in rock bream RBCs after RBIV infection. Each fish was injected with RBIV, and virus copy number in RBCs gradually increased from 4 days post-infection (dpi), peaking at 10 dpi. A total of 318 proteins were significantly regulated in RBCs from RBIV-infected individuals, 183 proteins were upregulated and 135 proteins were downregulated. Differentially upregulated proteins included those involved in cellular amino acid metabolic processes, cellular detoxification, snRNP assembly, and the spliceosome. Remarkably, the MHC class I-related protein pathway was upregulated during RBIV infection. Simultaneously, the regulation of apoptosis-related proteins, including caspase-6 (CASP6), caspase-9 (CASP9), Fas cell surface death receptor (FAS), desmoplakin (DSP), and p21 (RAC1)-activated kinase 2 (PAK2) changed with RBIV infection. Interestingly, the expression of genes within the ISG15 antiviral mechanism-related pathway, including filamin B (FLNB), interferon regulatory factor 3 (IRF3), nucleoporin 35 (NUP35), tripartite motif-containing 25 (TRIM25), and karyopherin subunit alpha 3 (KPNA3) were downregulated in RBCs from RBIV-infected individuals. Overall, these findings contribute to the understanding of RBIV pathogenesis and host interaction.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Gwangju, South Korea
| | | | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Gwangju, South Korea
| | | |
Collapse
|
2
|
Kim JW, Jeong JM, Bae JS, Cho DH, Jung SH, Hwang JY, Kwon MG, Seo JS, Baeck GW, Park CI. First description of programmed cell death10 (PDCD10) in rock bream (Oplegnathus fasciatus): Potential relations to the regulation of apoptosis by several pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:51-55. [PMID: 26472617 DOI: 10.1016/j.dci.2015.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
In this study, we isolated and characterized programmed cell death10 (PDCD10), which is known to be related to apoptosis, from rock bream (Oplegnathus fasciatus). The full-length rock bream PDCD10 (RbPDCD10) cDNA (1459 bp) contains an open reading frame of 633 bp that encodes 210 amino acids. Furthermore, multiple alignments revealed that the six of the α-helix bundles were well conserved among the other PDCD10 sequences tested. RbPDCD10 was significantly expressed in the liver, RBC (red blood cell), gill, intestine, trunk kidney and spleen. RbPDCD10 gene expression was also examined in several tissues, including the kidney, spleen, liver, and gill, under bacterial and viral challenges. Generally, all of the examined tissues from the fish that were infected with Edwardsiella tarda and the red sea bream iridovirus (RSIV) exhibited significant up-regulations of RbPDCD10 expression compared to the controls. However, RbPDCD10 expression exhibited dramatic down-regulations in all of the examined tissues following injections of Streptococcus iniae, which is major bacterial pathogen that is responsible for mass mortality in rock bream. Our results revealed that rock bream PDCD10 may be involved in the apoptotic regulation of rock bream immune responses.
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Sung Hee Jung
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Jee-Youn Hwang
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Mun-Gyeong Kwon
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Jung Soo Seo
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Gun-Wook Baeck
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea.
| |
Collapse
|
3
|
Kim JW, Lee JH, Bae JS, An CM, Nam BH, Jeong JM, Park CI. First molecular characterisation and expression analysis of a teleost thioredoxin-interacting protein (TXNIP) gene from rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:69-74. [PMID: 25934185 DOI: 10.1016/j.dci.2015.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Thioredoxin-interacting protein (TXNIP) is an important regulator of glucose metabolism that functions by inhibiting cellular glucose uptake. The full-length rock bream (Oplegnathus fasciatus) TXNIP (RbTXNIP) cDNA (2499 bp) contains an open reading frame of 1188 bp encoding 396 amino acids. Furthermore, multiple alignments showed that the arrestin domain was well conserved among the other TXNIP sequences tested. RbTXNIP was predicted to contain a PxxP and PPxY motif. Phylogenetic analysis indicated that RbTXNIP is most closely related to Fugu rubripes TXNIP. RbTXNIP was expressed significantly in the RBC, intestine, and spleen. RbTXNIP mRNA expression was also examined in several tissues under conditions of bacterial and viral challenge. Generally, all tissues examined from fish infected with Streptococcus iniae, Edwardsiella tarda and red sea bream iridovirus (RSIV) showed significant downregulation in RbTXNIP expression compared to controls. However, RbTXNIP expression showed significant upregulation in the spleen and kidney after injection of recombinant rock bream TRx1 protein. These findings provide a molecular foundation for functional studies and applications in teleosts.
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Jung-Ho Lee
- Inland Fisheries Research Institute, NFRDI, Jinhae 645-805, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea.
| |
Collapse
|
4
|
Walia V, Kumar R, Mitra A. Lipopolysaccharide and Concanavalin A Differentially Induce the Expression of Immune Response Genes in Caprine Monocyte Derived Macrophages. Anim Biotechnol 2015; 26:298-303. [DOI: 10.1080/10495398.2015.1013112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vishakh Walia
- Genome Analysis Laboratory, Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, India
| | - Rohit Kumar
- Genome Analysis Laboratory, Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, India
| | - Abhijit Mitra
- Genome Analysis Laboratory, Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
5
|
Kim JW, Shim SH, Lee JH, Jeong JM, Park CI. Recombinant thioredoxin 1 protein: the immune-adjuvant effect of Streptococcus iniae and its safety in rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2014; 39:152-157. [PMID: 24830770 DOI: 10.1016/j.fsi.2014.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/14/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
Adjuvant is an immune enhancer commonly used during vaccination to enhance the host immune response. In the present study, we analysed the recombinant protein produced from rock bream thioredoxin 1 cDNA (rRbTRx1). To verify the immune-stimulatory effect of this recombinant protein, changes in the expression level of several genes were investigated using the cDNA microarray chips in rock bream peripheral blood leukocytes stimulated with rRbTRx1. Furthermore, the immune responses of rock bream to Streptococcus iniae FKC (formalin-killed cell) vaccination alone or in combination with recombinant proteins were analysed after an experimental challenge with living S. iniae. Microarray analysis showed that 237 unique genes were upregulated more than two-fold after rRbTRx1 stimulation. Serum agglutination titres were relatively low; however, the FKC vaccine still conferred protection against S. iniae. Moreover, the adverse effects showed no statistically significant difference between fish injected with a concentration and non-injected fish. After experimental challenge to the rock bream by injection with living bacteria (S. iniae), the relative percent survival in the vaccinated groups with FKC + rRbTRx1 was significantly higher than that of the vaccinated groups with FKC alone, which were 85.9% and 68.2%, respectively. This indicated that the recombinant protein as an adjuvant showed synergism with the injected vaccine in rock bream.
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Sang Hee Shim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Jung-Ho Lee
- Genetics and Breeding Research Center, National Fisheries Research and Development Institute, Geoje 656-842, Republic of Korea
| | - Ji-Min Jeong
- Genetics and Breeding Research Center, National Fisheries Research and Development Institute, Geoje 656-842, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, Gyeongnam 650-160, Republic of Korea.
| |
Collapse
|
6
|
Lee S, Lim B, Lee J, Kim YC, Kim H, Priyathilaka TT, Wickramaarachchi WDN, Kim SJ, Kim SK, Jeong HB. Up-regulation of the arginine vasotocin precursor gene from Paralichthys olivaceus: isolation and expression upon acute pathogen invasion. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0178-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|