1
|
Tsugeki N, Nakane K, Doi H, Ochi N, Kuwae M. Reconstruction of 100-year dynamics in Daphnia spawning activity revealed by sedimentary DNA. Sci Rep 2022; 12:1741. [PMID: 35110566 PMCID: PMC8810866 DOI: 10.1038/s41598-021-03899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Environmental DNA (eDNA) is currently developing as a powerful tool for assessing aquatic species dynamics. However, its utility as an assessment tool for quantification remain under debate as the sources of eDNA for different species is not always known. Therefore, accumulating information about eDNA sources from different species is urgently required. The objective of our study was to evaluate whether sedimentary DNA targeting two Daphnia species, D. galeata and D. pulicaria, could track Daphnia population dynamics and resting egg production. Applying a quantitative PCR targeting the mitochondrial 12S rRNA gene on sediment cores collected in Lake Biwa, Japan, we compared sedimentary DNA concentration of Daphnia with the abundance of remains and ephippia, reflecting their abundance and resting egg production, respectively. We found that the sedimentary DNA concentrations of Daphnia for the past century were inconsistent with their population abundance. However, the concentration was highly correlated with the resting egg production. Our results provide evidence that ephippia with resting eggs, released during spawning activities, was a significant source of Daphnia DNA archived in sediments. Our work provides critical insights for using sedimentary DNA as a monitoring tool for egg production dating back 100 years.
Collapse
Affiliation(s)
- Narumi Tsugeki
- Faculty of Law, Matsuyama University, Matsuyama, 790-8578, Ehime, Japan.
| | - Kai Nakane
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, Kobe, 650-0047, Hyogo, Japan
| | - Natsuki Ochi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| |
Collapse
|
2
|
Chin TA, Cristescu ME. Speciation in Daphnia. Mol Ecol 2021; 30:1398-1418. [PMID: 33522056 DOI: 10.1111/mec.15824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
The microcrustacean Daphnia is arguably one of the most studied zooplankton species, having a well understood ecology, life history, and a relatively well studied evolutionary history. Despite this wealth of knowledge, species boundaries within closely related species in this genus often remain elusive and the major evolutionary forces driving the diversity of daphniids remain controversial. This genus contains more than 80 species with multiple cryptic species complexes, with many closely related species able to hybridize. Here, we review speciation research in Daphnia within the framework of current speciation theory. We evaluate the role of geography, ecology, and biology in restricting gene flow and promoting diversification. Of the 253 speciation studies on Daphnia, the majority of studies examine geographic barriers (55%). While evidence shows that geographic barriers play a role in species divergence, ecological barriers are also probably prominent in Daphnia speciation. We assess the contribution of ecological and nonecological reproductive isolating barriers between closely related species of Daphnia and found that none of the reproductive isolating barriers are restricting gene flow completely. Research on reproductive isolating barriers has disproportionally focused on two species complexes, the Daphnia pulex and Daphnia longispina species complexes. Finally, we identify areas of research that remain relatively unexplored and discuss future research directions that build our understanding of speciation in daphniids.
Collapse
Affiliation(s)
- Tiffany A Chin
- Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
3
|
Molinier C, Reisser CMO, Fields PD, Ségard A, Galimov Y, Haag CR. Evolution of Gene Expression during a Transition from Environmental to Genetic Sex Determination. Mol Biol Evol 2019; 36:1551-1564. [PMID: 31173134 DOI: 10.1093/molbev/msz123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic sex determination (GSD) can evolve from environmental sex determination (ESD) via an intermediate state in which both coexist in the same population. Such mixed populations are found in the crustacean Daphnia magna, where non-male producers (NMP, genetically determined females) coexist with male producers (MP), in which male production is environmentally inducible and can also artificially be triggered by exposure to juvenile hormone. This makes Daphnia magna a rare model species for the study of evolutionary transitions from ESD to GSD. Although the chromosomal location of the NMP-determining mutation has been mapped, the actual genes and pathways involved in the evolution of GSD from ESD remain unknown. Here, we present a transcriptomic analysis of MP and NMP females under control (female producing) and under hormone exposure conditions. We found ∼100 differentially expressed genes between MP and NMP under control conditions. Genes in the NMP-determining chromosome region were especially likely to show such constitutive expression differences. Hormone exposure led to expression changes of an additional ∼100 (MP) to ∼600 (NMP) genes, with an almost systematic upregulation of those genes in NMP. These observations suggest that the NMP phenotype is not determined by a simple "loss-of-function" mutation. Rather, homeostasis of female offspring production under hormone exposure appears to be an active state, tightly regulated by complex mechanisms involving many genes. In a broader view, this illustrates that the evolution of GSD, while potentially initiated by a single mutation, likely leads to secondary integration involving many genes and pathways.
Collapse
Affiliation(s)
- Cécile Molinier
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Céline M O Reisser
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.,Université de Fribourg, Ecology and Evolution, Fribourg, Switzerland.,IFREMER Centre du Pacifique, UMR 241 EIO, Labex CORAIL, Taravao, Tahiti, Polynésie Française
| | - Peter D Fields
- Universität Basel, Zoology Institute, Evolutionary Biology, Basel, Switzerland
| | - Adeline Ségard
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Yan Galimov
- Koltsov Institute of Developmental Biology, RAS, Moscow, Russia
| | - Christoph R Haag
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.,Université de Fribourg, Ecology and Evolution, Fribourg, Switzerland
| |
Collapse
|
4
|
Lin L, Xu M, Mu H, Wang W, Sun J, He J, Qiu JW, Luan T. Quantitative Proteomic Analysis to Understand the Mechanisms of Zinc Oxide Nanoparticle Toxicity to Daphnia pulex (Crustacea: Daphniidae): Comparing with Bulk Zinc Oxide and Zinc Salt. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5436-5444. [PMID: 30942576 DOI: 10.1021/acs.est.9b00251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO NPs) has resulted in their release to the environment. There has been concern about the ecotoxicity of ZnO NPs, but little is known about their toxic mechanisms. In the present study, we conducted acute toxicity tests to show that ZnO NPs are more toxic to the freshwater crustacean Daphnia pulex compared to bulk ZnO or ZnSO4·7H2O. To provide an integrated and quantitative insights into the toxicity of ZnO NPs, we conducted isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis, which detected 262, 331, and 360 differentially expressed proteins (DEPs) in D. pulex exposed to ZnO NPs, bulk ZnO, and ZnSO4·7H2O, respectively. Among the DEPs, 224 were shared among the three treatments. These proteins were related to energy metabolism, oxidative stress, and endoplasmic reticulum stress. The three forms of Zn all caused D. pulex to downregulate Chitinase expression, disrupt Ca2+ homeostasis, and reduce expression of digestive enzymes. Nevertheless, 29 proteins were expressed only in the ZnO NP treatment. In particular, histone (H3) and ribosomal proteins (L13) were obviously influenced under ZnO NP treatment. However, increased expression levels of h3 and l13 genes were not induced only in ZnO NP treatment, they were sensitive to Zn ions under the same exposure concentration. These results indicate that the three zinc substances have a similar mode of action and that released zinc ions are the main contributor to ZnO NP toxicity to D. pulex under a low concentration. Further investigation is needed to clarify whether a small proportion of DEPs or higher bioavailability cause ZnO NPs to be more toxic compared to bulk ZnO or ionic zinc.
Collapse
Affiliation(s)
- Li Lin
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Mingzhi Xu
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Huawei Mu
- School of Life Sciences , University of Science and Technology of China , Hefei 230071 , P. R. China
| | - Wenwen Wang
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jin Sun
- Department of Ocean Science , Hong Kong University of Science and Technology , Hong Kong , P. R. China
| | - Jing He
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jian-Wen Qiu
- Department of Biology , Hong Kong Baptist University , Hong Kong , P. R. China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol/School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
5
|
Hu J, Lin C, Liu M, Tong Q, Xu S, Wang D, Zhao Y. Analysis of the microRNA transcriptome of Daphnia pulex during aging. Gene 2018; 664:101-110. [PMID: 29684489 DOI: 10.1016/j.gene.2018.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/13/2018] [Accepted: 04/12/2018] [Indexed: 01/30/2023]
Abstract
Daphnia pulex is an important food organism that exhibits a particular mode of reproduction known as cyclical parthenogenesis (asexual) and sexual reproduction. Regulation of the aging process by microRNAs (miRNAs) is a research hotspot in miRNA studies. To investigate a possible role of miRNAs in regulating aging and senescence, we used Illumina HiSeq to sequence two miRNA libraries from 1-day-old (1d) and 25-day-old (25d) D. pulex specimens. In total, we obtained 11,218,097 clean reads and 28,569 unique miRNAs from 1d specimens and 11,819,106 clean reads and 44,709 unique miRNAs from 25d specimens. Bioinformatic analyses was used to identify 1335 differentially expressed miRNAs from known miRNAs, including 127 miRNAs that exhibited statistically significant differences (P < 0.01); 92 miRNAs were upregulated and 35 were downregulated. Quantitative real-time (qRT)-PCR experiments were performed for nine miRNAs from five samples (1d, 5d, 10d, 15d, 20d and 25d) during the aging process, and the sequencing and qRT-PCR data were found to be consistent. Ninety-four miRNAs were predicted to correspond to 2014 target genes in known miRNAs with 4032 target gene sites. Sixteen pathways changed significantly (P < 0.05) at different developmental stages, revealing many important principles of the miRNA regulatory aging network of D. pulex. Overall, the difference in miRNA expression profile during aging of D. pulex forms a basis for further studies aimed at understanding the role of miRNAs in regulating aging, reproductive transformation, senescence, and longevity.
Collapse
Affiliation(s)
- Jiabao Hu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chongyuan Lin
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mengdi Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiaoqiong Tong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Danli Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
6
|
Qiu L, Zhao C, Wang P, Fan S, Yan L, Xie B, Jiang S, Wang S, Lin H. Genomic structure, expression, and functional characterization of checkpoint kinase 1 from Penaeus monodon. PLoS One 2018; 13:e0198036. [PMID: 29795680 PMCID: PMC5967826 DOI: 10.1371/journal.pone.0198036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Chk1 is a cell-cycle regulator. Chk1 has been identified in organisms ranging from yeast to humans, but few researchers have studied Chk1 in shrimps. We cloned Chk1 from the black tiger shrimp (Penaeus monodon). The full-length cDNA sequence of PmChk1 had 3,334 base pairs (bp), with an open reading frame of 1,455 bp. The complete genomic sequence of PmChk1 (11,081 bp) contained 10 exons separated by nine introns. qRT-PCR showed that PmChk1 was highly expressed in the ovaries and gills of P. monodon. The lowest PmChk1 expression was noted in stage III of ovarian development in P. monodon. PmChk1 expression decreased significantly after injection of 5-hydroxytryptamine and eyestalk ablation in P. monodon ovaries. RNA interference experiments were undertaken to examine the expression of PmChk1, PmCDC2, and PmCyclin B. PmChk1 knockdown in the ovaries and hepatopancreas by dsRNA-Chk1 was successful. The localization and level of PmChk1 expression in the hepatopancreas was studied using in situ hybridization, which showed that data were in accordance with those of qRT-PCR. The Gonadosomatic Index of P. monodon after dsRNA-Chk1 injection was significantly higher than that after injection of dsRNA-GFP or phosphate-buffered saline. These data suggest that PmChk1 may have important roles in the ovarian maturation of P. monodon.
Collapse
Affiliation(s)
- Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Pengfei Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Sigang Fan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Lulu Yan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Bobo Xie
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| | - Shu Wang
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China
| |
Collapse
|