1
|
de Oliveira FS, Brann T, Wolf IR, Nogaroto V, Martins C, Protasio AV, Vicari MR. The landscape of transposable element distribution in the genome of Neotropical fish Apareiodon sp. (Characiformes: Parodontidae). Chromosome Res 2025; 33:6. [PMID: 40186682 DOI: 10.1007/s10577-025-09765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Transposable elements (TEs) are widely present in eukaryotic genomes, where they can contribute to genome size and functional modifications. As new genomes are sequenced and annotated, more studies can be conducted regarding TE content, distribution, and genome evolution. TEs are extensively diversified in fish genomes resulting in an important role in genome and chromosome evolution. However, curated TE libraries are still scarce in non-model organisms, making it difficult to evaluate TE's impact on genomic modifications thoroughly. Here, we aimed to obtain a curated TE library from the neotropical fish Apareiodon sp. genome. The prospection and curation of the TE library resulted in 244 families from 18 superfamilies of DNA transposons and retrotransposons, which comprise about 10% of the genome, with most insertions fitting in one or a few families. A greater diversity of retrotransposon families is present, especially for Ty3 superfamily. Despite the greater number of retrotransposon families, DNA transposons are the most abundant in the genome, with 37% of all TE insertions belonging to the Tc1-Mariner superfamily. Complete TE copies were observed for almost all superfamilies, with most of the sequences on the Tc1-Mariner group. DNA transposons and SINEs presented older insertions in the genome, followed by LINEs and LTR retrotransposons. TE genome density is highest in the cs25 scaffold, and enriched for Helitron elements. With these data, allied to previous studies on chromosome evolution, we suggest that cs25 bears the W chromosome specific region of the Apareiodon sp. genome, with the presence of significant amount of Helitron insertions.
Collapse
Affiliation(s)
- Fernanda Souza de Oliveira
- Programa de Pós-Graduação Em Genética, Universidade Federal Do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Toby Brann
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, CB2 1QP, UK
| | - Ivan Rodrigo Wolf
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Anna Victoria Protasio
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, CB2 1QP, UK
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação Em Genética, Universidade Federal Do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil.
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
2
|
Ben Amara W, Djebbi S, Khemakhem MM. Evolutionary History of the DD41D Family of Tc1/Mariner Transposons in Two Mayetiola Species. Biochem Genet 2024:10.1007/s10528-024-10898-z. [PMID: 39117934 DOI: 10.1007/s10528-024-10898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Tc1/mariner elements are ubiquitous in eukaryotic genomes including insects. They are diverse and divided into families and sub-families. The DD34D family including mauritiana and irritans subfamilies have already been identified in two closely related species of Cecidomyiids M. destructor and M. hordei. In the current study the de novo and similarity-based methods allowed the identification for the first time of seven consensuses in M. destructor and two consensuses in M. hordei belonging to DD41D family whereas the in vitro method allowed the amplification of two and three elements in these two species respectively. Most of identified elements accumulated different mutations and long deletions spanning the N-terminal region of the transposase. Phylogenetic analyses showed that the DD41D elements were clustered in two groups belonging to rosa and Long-TIR subfamilies. The age estimation of the last transposition events of the identified Tc1/mariner elements in M. destructor showed different evolutionary histories. Indeed, irritans elements have oscillated between periods of silencing and reappearance while rosa and mauritiana elements have shown regular activity with large recent bursts. The study of insertion sites showed that they are mostly intronic and that some recently transposed elements occurred in genes linked to putative DNA-binding domains and enzymes involved in metabolic chains. Thus, this study gave evidence of the existence of DD41D family in two Mayetiola species and an insight on their evolutionary history.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia.
| |
Collapse
|
3
|
Puzakov MV, Puzakova LV, Shi S, Cheresiz SV. maT and mosquito transposons in cnidarians: evolutionary history and intraspecific differences. Funct Integr Genomics 2023; 23:244. [PMID: 37454326 DOI: 10.1007/s10142-023-01175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Transposable elements exert a significant effect on the size and structure of eukaryotic genomes. Tc1/mariner superfamily elements represent the widely distributed and highly variable group of DNA transposons. Tc1/mariner elements include TLE/DD34-38E, MLE/DD34D, maT/DD37D, Visitor/DD41D, Guest/DD39D, mosquito/DD37E, and L18/DD37E families, all of which are well or less scarcely studied. However, more detailed research into the patterns of prevalence and diversity of Tc1/mariner transposons enables one to better understand the coevolution of the TEs and the eukaryotic genomes. We performed a detailed analysis of the maT/DD37D family in Cnidaria. The study of 77 genomic assemblies demonstrated that maT transposons are found in a limited number of cnidarian species belonging to classes Cubozoa (1 species), Hydrozoa (3 species) и Scyphozoa (5 species) only. The identified TEs were classified into 5 clades, with the representatives from Pelagiidae (class Scyphozoa) forming a separate clade of maT transposons, which has never been described previously. The potentially functional copies of maT transposons were identified in the hydrae. The phylogenetic analysis and the studies of distribution among the taxons and the evolutionary dynamics of the elements suggest that maT transposons of the cnidarians are the descendants of several independent invasion events occurring at different periods of time. We also established that the TEs of mosquito/DD37E family are found in Hydridae (class Hydrozoa) only. A comparison of maT and mosquito prevalence in two genomic assemblies of Hydra viridissima revealed obvious differences, thus demonstrating that each individual organism might carry a unique mobilome pattern. The results of the presented research make us better understand the diversity and evolution of Tc1/mariner transposons and their effect on the eukaryotic genomes.
Collapse
Affiliation(s)
- Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky Eve., 38, Moscow, Russia, 119991.
| | - Lyudmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky Eve., 38, Moscow, Russia, 119991
| | - Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sergey V Cheresiz
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova st., 1, Novosibirsk, Russia, 630090
- State Scientific Research Institute of Physiology and Basic Medicine, P.O. Box 237, Novosibirsk, Russia, 630117
| |
Collapse
|
4
|
Xiang K, Puzakov M, Shi S, Diaby M, Ullah N, Gao B, Song C. Mosquito ( MS), a DD37E Family of Tc1/ Mariner, Displaying a Distinct Evolution Profile from DD37E/ TRT and DD37E/ L18. Genes (Basel) 2023; 14:1379. [PMID: 37510284 PMCID: PMC10379824 DOI: 10.3390/genes14071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Diverse Tc1/mariner elements with the DD37E signature have been detected. However, their evolutionary relationship and profiles are largely unknown. Using bioinformatics methods, we defined the evolution profile of a Tc1/Mariner family, which harbors the catalytic domain with the DD37E signature, and renamed it DD37E/Mosquito (MS). MS transposons form a separate monophyletic clade in the phylogenetic tree, distinct from the other two groups of elements with the DD37E signature, DD37E/L18 and DD37E/TRT (transposon related to Tc1), and represent a very different taxonomic distribution from that of DD37E/TRT. MS is only detected in invertebrate and is mostly present in Arthropoda, as well as in Cnidaria, Ctenophora, Mollusca, Nematoda, and Platyhelminthes, with a total length of about 1.3 kb, containing an open reading frame (ORF) encoding about 340 amino acids transposases, with a conserved DD37E catalytic domain. The terminal inverted repeat (TIR) lengths range from 19 bp to 203 bp, and the target site duplication (TSD) is TA. We also identified few occurrences of MS horizontal transfers (HT) across lineages of diptera. In this paper, the distribution characteristics, structural characteristics, phylogenetic evolution, and horizontal transfer of the MS family are fully analyzed, which is conducive to supplementing and improving the Tc1/Mariner superfamily and excavating active transposons.
Collapse
Affiliation(s)
- Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mikhail Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky Ave, 38, Moscow 119991, Russia
| | - Shasha Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Numan Ullah
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bo Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Fan J, Yang S, Wennmann JT, Wang D, Jehle JA. The distribution and characteristic of two transposable elements in the genome of Cydia pomonella granulovirus and codling moth. Mol Phylogenet Evol 2023; 182:107745. [PMID: 36842732 DOI: 10.1016/j.ympev.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Baculoviruses are capable to acquire insect host transposable elements (TEs) in their genomes and are hypothesized as possible vectors of insect transposons between Lepidopteran species. Here, we investigated the host origin of two TEs, namely the Tc1/mariner-like element TCp3.2 and a 0.7 kbp insertion sequence (IS07), found in the genome of different isolates of Cydia pomonella granulovirus (CpGV), a member of the Betabaculovirus genus. The sequences of both TEs were searched for in the full genome sequence database of codling moth (CM, Cydia pomonella L.). A total of eleven TCp3.2 TE copies and 76 copies of the IS07 fragments were identified in the CM genome. These TEs were distributed over the 22 autosomes and the Z chromosome (chr1) of CM, except chr6, chr12, chr16, chr23, chr27 and the W chromosome (chr29). TCp3.2 copies with two transposase genes in opposite direction, representing a novel feature, were identified on chr10 and chr18. The TCp3.2 transposase was characterized by DD41D motif of classic Tc1/mariner transposons, consisting of DNA-binding domain, catalytic domain and nuclear localization signal (NLS). Transcription analyses of uninfected and CpGV-infected CM larvae suggested a doubling of the TCp3.2 transposase transcription rate in virus infected larvae. Furthermore, IS07 insertion into the CpGV genome apparently added new transcription initiation sites to the viral genome. The global analysis of the distribution of two TEs in the genome of CM addressed the influx of mobile TEs from CM to CpGV, a genetic process that contributes to the population diversity of baculoviruses.
Collapse
Affiliation(s)
- Jiangbin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Shili Yang
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany.
| |
Collapse
|
6
|
Puzakov MV, Puzakova LV, Ulupova YN. Differential Activity of Genes with IS630/TC1/MARINER Transposon Fragments in the Genome of the Ctenophore Mnemiopsis leidyi. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s089141682204005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Revisiting the Tigger Transposon Evolution Revealing Extensive Involvement in the Shaping of Mammal Genomes. BIOLOGY 2022; 11:biology11060921. [PMID: 35741442 PMCID: PMC9219625 DOI: 10.3390/biology11060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Despite the discovery of the Tigger family of pogo transposons in the mammalian genome, the evolution profile of this family is still incomplete. Here, we conducted a systematic evolution analysis for Tigger in nature. The data revealed that Tigger was found in a broad variety of animals, and extensive invasion of Tigger was observed in mammal genomes. Common horizontal transfer events of Tigger elements were observed across different lineages of animals, including mammals, that may have led to their widespread distribution, while parasites and invasive species may have promoted Tigger HT events. Our results also indicate that the activity of Tigger transposons tends to be low in vertebrates; only one mammalian genome and fish genome may harbor active Tigger. Abstract The data of this study revealed that Tigger was found in a wide variety of animal genomes, including 180 species from 36 orders of invertebrates and 145 species from 29 orders of vertebrates. An extensive invasion of Tigger was observed in mammals, with a high copy number. Almost 61% of those species contain more than 50 copies of Tigger; however, 46% harbor intact Tigger elements, although the number of these intact elements is very low. Common HT events of Tigger elements were discovered across different lineages of animals, including mammals, that may have led to their widespread distribution, whereas Helogale parvula and arthropods may have aided Tigger HT incidences. The activity of Tigger seems to be low in the kingdom of animals, most copies were truncated in the mammal genomes and lost their transposition activity, and Tigger transposons only display signs of recent and current activities in a few species of animals. The findings suggest that the Tigger family is important in structuring mammal genomes.
Collapse
|
8
|
Puzakov MV, Puzakova LV. Prevalence, Diversity, and Evolution of L18 (DD37E) Transposons in the Genomes of Cnidarians. Mol Biol 2022. [DOI: 10.1134/s0026893322030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Puzakova LV, Puzakov MV. Zvezda—A New Subfamily of Tc1-Like Transposons in Asterozoa Genomes. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Shen D, Gao B, Miskey C, Chen C, Sang Y, Zong W, Wang S, Wang Y, Wang X, Ivics Z, Song C. Multiple Invasions of Visitor, a DD41D Family of Tc1/mariner Transposons, throughout the Evolution of Vertebrates. Genome Biol Evol 2021; 12:1060-1073. [PMID: 32602886 DOI: 10.1093/gbe/evaa135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the DD41D (named as Visitor, VS) family of Tc1/mariner transposons was discovered in Arthropods and Mollusca, the evolution profile of this family is still largely unknown. We found that VS is widespread in the animal kingdom, including 140 species of 18 orders in invertebrates and 30 species of 12 orders in vertebrates, and one land plant species. Our data revealed multiple horizontal transfer events in both invertebrates and vertebrates and invasion into multiple lineages of mammals, including Chiroptera (seven species), Dasyuromorphia/Marsupialia (one species), Didelphimorphia/Marsupialia (one species), Diprotodontia/Marsupialia (two species), and Primates (one species). Phylogenetic analysis revealed a close relationship of VSs to DD37D/maT and DD34D/mariner and confirmed that VSs with the DD40D signature identified previously are not a distinct family but originated from DD41D/VS. Age analysis revealed that the most recent invasion of VSs was found in ray-finned fishes and a toad, followed by relatively young invasions in bats and marsupials, whereas VSs in mammals, jawless fishes, and lizards were mainly represented by ancient copies, suggesting old age. Phylogenetic analyses and comparison of pairwise distances between VSs and recombination-activating gene 1 (RAG1) support horizontal transfer events of VSs in vertebrates. The intact VSs from bats were nonfunctional as determined by the transposition activity assay. Some vertebrate lineages and species were identified as the hot hosts of Tc1/mariner transposons. Overall, our study presents the evolution profile of VSs and suggests that VSs play roles in diversifying and shaping the genomes of diverse animal lineages.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, China.,Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, China
| | - Wencheng Zong
- College of Animal Science & Technology, Yangzhou University, China
| | - Saisai Wang
- College of Animal Science & Technology, Yangzhou University, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, China
| |
Collapse
|
11
|
Puzakov MV, Puzakova LV, Cheresiz SV, Sang Y. The IS630/Tc1/mariner transposons in three ctenophore genomes. Mol Phylogenet Evol 2021; 163:107231. [PMID: 34133948 DOI: 10.1016/j.ympev.2021.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Transposable elements (TEs) exert a significant effect on the structure and functioning of the genomes and also serve as a source of the new genes. The study of the TE diversity and evolution in different taxa is indispensable for the fundamental understanding of their roles in the genomes. IS630/Tc1/mariner (ITm) transposable elements represent the most prevalent and diverse group of DNA transposons. In this work, we studied the diversity, evolutionary dynamics and the phylogenetic relationships of the ITm transposons found in three ctenophore species: Mnemiopsis leidyi, Pleurobrachia bachei, Beroe ovata. We identified 29 ITm transposons, seven of which possess the terminal inverted repeats (TIRs) and an intact transposase, and, thus, are, presumably, active. Four other ITm transposons have the features of domesticated TEs. According to the results of the phylogenetic analysis, the ITm transposons of the ctenophores represent five groups - MLE/DD34D, TLE/DD34-38E, mosquito/DD37E, Visiror/DD41D and pogo/DDxD. Pogo/DDxD superfamily turnes out to be the most diverse and prevalent, since it accounts for more than 40% of the TEs identified. The data obtained in this research will fill the gap of knowledge of the diversity and evolution of the ITm transposons in the multicellular genomes and will lay the ground for the study of the TE effects on the evolution of the ctenophores.
Collapse
Affiliation(s)
- Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia.
| | - Ludmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia
| | - Sergey V Cheresiz
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova st., 1, Novosibirsk 630090, Russia; State Scientific Research Institute of Physiology and Basic Medicine, P.O. Box 237, Novosibirsk 630117, Russia
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
12
|
Gao B, Wang Y, Diaby M, Zong W, Shen D, Wang S, Chen C, Wang X, Song C. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob DNA 2020; 11:25. [PMID: 32742312 PMCID: PMC7386202 DOI: 10.1186/s13100-020-00220-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tc1/mariner and Zator, as two superfamilies of IS630-Tc1-mariner (ITm) group, have been well-defined. However, the molecular evolution and domestication of pogo transposons, once designated as an important family of the Tc1/mariner superfamily, are still poorly understood. RESULTS Here, phylogenetic analysis show that pogo transposases, together with Tc1/mariner, DD34E/Gambol, and Zator transposases form four distinct monophyletic clades with high bootstrap supports (> = 74%), suggesting that they are separate superfamilies of ITm group. The pogo superfamily represents high diversity with six distinct families (Passer, Tigger, pogoR, Lemi, Mover, and Fot/Fot-like) and wide distribution with an expansion spanning across all the kingdoms of eukaryotes. It shows widespread occurrences in animals and fungi, but restricted taxonomic distribution in land plants. It has invaded almost all lineages of animals-even mammals-and has been domesticated repeatedly in vertebrates, with 12 genes, including centromere-associated protein B (CENPB), CENPB DNA-binding domain containing 1 (CENPBD1), Jrk helix-turn-helix protein (JRK), JRK like (JRKL), pogo transposable element derived with KRAB domain (POGK), and with ZNF domain (POGZ), and Tigger transposable element-derived 2 to 7 (TIGD2-7), deduced as originating from this superfamily. Two of them (JRKL and TIGD2) seem to have been co-domesticated, and the others represent independent domestication events. Four genes (TIGD3, TIGD4, TIGD5, and POGZ) tend to represent ancient domestications in vertebrates, while the others only emerge in mammals and seem to be domesticated recently. Significant structural variations including target site duplication (TSD) types and the DDE triad signatures (DD29-56D) were observed for pogo transposons. Most domesticated genes are derived from the complete transposase genes; but CENPB, POGK, and POGZ are chimeric genes fused with additional functional domains. CONCLUSIONS This is the first report to systematically reveal the evolutionary profiles of the pogo transposons, suggesting that pogo and Tc1/Mariner are two separate superfamilies of ITm group, and demonstrating the repeated domestications of pogo in vertebrates. These data indicate that pogo transposons have played important roles in shaping the genome and gene evolution of fungi and animals. This study expands our understanding of the diversity of pogo transposons and updates the classification of ITm group.
Collapse
Affiliation(s)
- Bo Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wencheng Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
13
|
Gao B, Sang Y, Zong W, Diaby M, Shen D, Wang S, Wang Y, Chen C, Song C. Evolution and domestication of Tc1/mariner transposons in the genome of African coelacanth ( Latimeria chalumnae). Genome 2020; 63:375-386. [PMID: 32268072 DOI: 10.1139/gen-2019-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Here, we comprehensively analysed the abundance, diversity, and activity of Tc1/mariner transposons in African coelacanth (Latimeria chalumnae). Fifteen Tc1/mariner autonomous transposons were identified and grouped into six clades: DD34E/Tc1, DD34D/mariner, DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger, belonging to three known families: DD34E/Tc1, DD34D/mariner, and DD×D/pogo (DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger). Thirty-one miniature inverted-repeat transposable element (MITE) transposons of Tc1/mariner were also identified, and 20 of them display similarity to the identified autonomous transposons. The structural organization of these full Tc1/mariner elements includes a transposase gene flanked by terminal inverted repeats (TIRs) with TA dinucleotides. The transposases contain N-terminal DNA binding domain and a C-terminal catalytic domain characterized by the presence of a conservative D(Asp)DE(Glu)/D triad that is essential for transposase activity. The Tc1/mariner superfamily in coelacanth exhibited very low genome coverage (0.3%), but it experienced an extraordinary difference of proliferation dynamics among the six clades identified; moreover, most of them exhibited a very recent and current proliferation, suggesting that some copies of these transposons are putatively active. Additionally, at least four functional genes derived from Tc1/mariner transposons were found. We provide an up-to-date overview of Tc1/mariner in coelacanth, which may be helpful in determining genome and gene evolution in this living fossil.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yatong Sang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wencheng Zong
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mohamed Diaby
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
14
|
The Tc1-like elements with the spliceosomal introns in mollusk genomes. Mol Genet Genomics 2020; 295:621-633. [DOI: 10.1007/s00438-020-01645-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
|
15
|
Sang Y, Gao B, Diaby M, Zong W, Chen C, Shen D, Wang S, Wang Y, Ivics Z, Song C. Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals. Mob DNA 2019; 10:45. [PMID: 31788035 PMCID: PMC6875036 DOI: 10.1186/s13100-019-0188-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/11/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Tc1/mariner superfamily might represent the most diverse and widely distributed group of DNA transposons. Several families have been identified; however, exploring the diversity of this superfamily and updating its classification is still ongoing in the life sciences. RESULTS Here we identified a new family of Tc1/mariner transposons, named Incomer (IC), which is close to, but distinct from the known family DD34E/Tc1. ICs have a total length of about 1.2 kb, and harbor a single open reading frame encoding a ~ 346 amino acid transposase with a DD36E motif and flanked by short terminal inverted repeats (TIRs) (22-32 base pairs, bp). This family is absent from prokaryotes, and is mainly distributed among vertebrates (141 species of four classes), including Agnatha (one species of jawless fish), Actinopterygii (132 species of ray-finned fish), Amphibia (four species of frogs), and Mammalia (four species of bats), but have a restricted distribution in invertebrates (four species in Insecta and nine in Arachnida). All ICs in bats (Myotis lucifugus, Eptesicus fuscus, Myotis davidii, and Myotis brandtii) are present as truncated copies in these genomes, and most of them are flanked by relatively long TIRs (51-126 bp). High copy numbers of miniature inverted-repeat transposable elements (MITEs) derived from ICs were also identified in bat genomes. Phylogenetic analysis revealed that ICs are more closely related to DD34E/Tc1 than to other families of Tc1/mariner (e.g., DD34D/mariner and DD × D/pogo), and can be classified into four distinct clusters. The host and IC phylogenies and pairwise distance comparisons between RAG1 genes and all consensus sequences of ICs support the idea that multiple episodes of horizontal transfer (HT) of ICs have occurred in vertebrates. In addition, the discovery of intact transposases, perfect TIRs and target site duplications of ICs suggests that this family may still be active in Insecta, Arachnida, frogs, and fish. CONCLUSIONS Exploring the diversity of Tc1/mariner transposons and revealing their evolutionary profiles will help provide a better understanding of the evolution of DNA transposons and their impact on genomic evolution. Here, a newly discovered family (DD36E/Incomer) of Tc1/mariner transposons is described in animals. It displays a similar structural organization and close relationship with the known DD34E/Tc1 elements, but has a relatively narrow distribution, indicating that DD36E/IC might have originated from the DD34E/Tc1 family. Our data also support the hypothesis of horizontal transfer of IC in vertebrates, even invading one lineage of mammals (bats). This study expands our understanding of the diversity of Tc1/mariner transposons and updates the classification of this superfamily.
Collapse
Affiliation(s)
- Yatong Sang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Mohamed Diaby
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wencheng Zong
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
16
|
Puzakov MV, Puzakova LV. leidyi Is a New Group of DD41D Transposons in Mnemiopsis leidyi Genome. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
An Analysis of IS630/Tc1/mariner Transposons in the Genome of a Pacific Oyster, Crassostrea gigas. J Mol Evol 2018; 86:566-580. [PMID: 30283979 DOI: 10.1007/s00239-018-9868-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Transposable elements represent the DNA fragments capable of increasing their copy number and moving within the genome. Class II mobile elements represents the DNA transposons, which transpose via excision and the subsequent reinsertion at random genomic loci. The increase of their copy number occurs only when the transposition event is coupled with the replication. IS630/Tc1/mariner DNA transposon superfamily is one of the largest and widely distributed among the Class II elements. In this work, we provide a detailed analysis of IS630/Tc1/mariner DNA transposons from the Pacific oyster, Crassostrea gigas. IS630/Tc1/mariner transposons represented in the genome of the Pacific oyster belong to four families, Tc1 (DD34E), mariner (DD34D), pogo (DDxD), and rosa (DD41D). More than a half of IS630/Tc1/mariner elements from C. gigas belong to Tc1 family. Furthermore, Mariner-31_CGi element was shown to represent a new and previously unknown family with DD37E signature. We also discovered the full-size transcripts of eight elements from Tc1, mariner, and pogo families, three of which can, presumably, retain their transposition activity.
Collapse
|
18
|
Puzakova LV, Puzakov MV. The Tc1/mariner DNA transposons in the genome of mollusk Littorina saxatilis. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417120110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Bouallègue M, Filée J, Kharrat I, Mezghani-Khemakhem M, Rouault JD, Makni M, Capy P. Diversity and evolution of mariner-like elements in aphid genomes. BMC Genomics 2017; 18:494. [PMID: 28662628 PMCID: PMC5490172 DOI: 10.1186/s12864-017-3856-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Although transposons have been identified in almost all organisms, genome-wide information on mariner elements in Aphididae remains unknown. Genomes of Acyrthosiphon pisum, Diuraphis noxia and Myzus persicae belonging to the Macrosiphini tribe, actually available in databases, have been investigated. Results A total of 22 lineages were identified. Classification and phylogenetic analysis indicated that they were subdivided into three monophyletic groups, each of them containing at least one putative complete sequence, and several non-autonomous sublineages corresponding to Miniature Inverted-Repeat Transposable Elements (MITE), probably generated by internal deletions. A high proportion of truncated and dead copies was also detected. The three clusters can be defined from their catalytic site: (i) mariner DD34D, including three subgroups of the irritans subfamily (Macrosiphinimar, Batmar-like elements and Dnomar-like elements); (ii) rosa DD41D, found in A. pisum and D. noxia; (iii) a new clade which differs from rosa through long TIRs and thus designated LTIR-like elements. Based on its catalytic domain, this new clade is subdivided into DD40D and DD41D subgroups. Compared to other Tc1/mariner superfamily sequences, rosa DD41D and LTIR DD40-41D seem more related to maT DD37D family. Conclusion Overall, our results reveal three clades belonging to the irritans subfamily, rosa and new LTIR-like elements. Data on structure and specific distribution of these transposable elements in the Macrosiphini tribe contribute to the understanding of their evolutionary history and to that of their hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3856-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryem Bouallègue
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.,Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Imen Kharrat
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Maha Mezghani-Khemakhem
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Mohamed Makni
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
20
|
Gao B, Chen W, Shen D, Wang S, Chen C, Zhang L, Wang W, Wang X, Song C. Characterization of autonomous families of Tc1/mariner transposons in neoteleost genomes. Mar Genomics 2017; 34:67-77. [PMID: 28545861 DOI: 10.1016/j.margen.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
We report the comprehensive analysis of Tc1/mariner transposons in six species of neoteleost (cod, tetraodon, fugu, medaka, stickleback, and tilapia) for which draft sequences are available. In total, 33 Tc1/mariner families were identified in these neoteleost genomes, with 3-7 families in each species. Thirty of these are in full length and designed as autonomous families, and were classified into the DD34E (Tc1) and DD×D (pogo) groups. The DD34E (Tc1) group was further classified into five clusters (Passport-like, SB-like, Frog Prince-like, Minos-like, and Bari-like). Within the genomes of cod, tetraodon, fugu, and stickleback, the Tc1/mariner DNA transposons exhibit very low proliferation with <1% of genome. In contrast, medaka and tilapia display high accumulation of Tc1/mariner transposons with 2.91% and 5.09% of genome coverages, respectively. Divergence analysis revealed that most identified Tc1/mariner transposons have undergone one round of recent accumulation, followed by a decrease in activity. One family in stickleback (Tc1_6_Ga) exhibits a very recent and strong expansion, which suggests that this element is a very young invader and putatively active. The structural organization of these Tc1/mariner elements is also described. Generally, the Tc1/mariner transposons display a high diversity and varied abundance in the neoteleost genomes with current and recent activity.
Collapse
Affiliation(s)
- Bo Gao
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Chen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dan Shen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Saisai Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Zhang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
21
|
Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Genet Genomics 2017; 292:565-583. [PMID: 28204924 DOI: 10.1007/s00438-017-1291-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
The coffee berry borer (CBB) Hypothenemus hampei is the most limiting pest of coffee production worldwide. The CBB genome has been recently sequenced; however, information regarding the presence and characteristics of transposable elements (TEs) was not provided. Using systematic searching strategies based on both de novo and homology-based approaches, we present a library of TEs from the draft genome of CBB sequenced by the Colombian Coffee Growers Federation. The library consists of 880 sequences classified as 66% Class I (LTRs: 46%, non-LTRs: 20%) and 34% Class II (DNA transposons: 8%, Helitrons: 16% and MITEs: 10%) elements, including families of the three main LTR (Gypsy, Bel-Pao and Copia) and non-LTR (CR1, Daphne, I/Nimb, Jockey, Kiri, R1, R2 and R4) clades and DNA superfamilies (Tc1-mariner, hAT, Merlin, P, PIF-Harbinger, PiggyBac and Helitron). We propose the existence of novel families: Hypo, belonging to the LTR Gypsy superfamily; Hamp, belonging to non-LTRs; and rosa, belonging to Class II or DNA transposons. Although the rosa clade has been previously described, it was considered to be a basal subfamily of the mariner family. Based on our phylogenetic analysis, including Tc1, mariner, pogo, rosa and Lsra elements from other insects, we propose that rosa and Lsra elements are subfamilies of an independent family of Class II elements termed rosa. The annotations obtained indicate that a low percentage of the assembled CBB genome (approximately 8.2%) consists of TEs. Although these TEs display high diversity, most sequences are degenerate, with few full-length copies of LTR and DNA transposons and several complete and putatively active copies of non-LTR elements. MITEs constitute approximately 50% of the total TEs content, with a high proportion associated with DNA transposons in the Tc1-mariner superfamily.
Collapse
|