1
|
Fan J, Yang S, Wennmann JT, Wang D, Jehle JA. The distribution and characteristic of two transposable elements in the genome of Cydia pomonella granulovirus and codling moth. Mol Phylogenet Evol 2023; 182:107745. [PMID: 36842732 DOI: 10.1016/j.ympev.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Baculoviruses are capable to acquire insect host transposable elements (TEs) in their genomes and are hypothesized as possible vectors of insect transposons between Lepidopteran species. Here, we investigated the host origin of two TEs, namely the Tc1/mariner-like element TCp3.2 and a 0.7 kbp insertion sequence (IS07), found in the genome of different isolates of Cydia pomonella granulovirus (CpGV), a member of the Betabaculovirus genus. The sequences of both TEs were searched for in the full genome sequence database of codling moth (CM, Cydia pomonella L.). A total of eleven TCp3.2 TE copies and 76 copies of the IS07 fragments were identified in the CM genome. These TEs were distributed over the 22 autosomes and the Z chromosome (chr1) of CM, except chr6, chr12, chr16, chr23, chr27 and the W chromosome (chr29). TCp3.2 copies with two transposase genes in opposite direction, representing a novel feature, were identified on chr10 and chr18. The TCp3.2 transposase was characterized by DD41D motif of classic Tc1/mariner transposons, consisting of DNA-binding domain, catalytic domain and nuclear localization signal (NLS). Transcription analyses of uninfected and CpGV-infected CM larvae suggested a doubling of the TCp3.2 transposase transcription rate in virus infected larvae. Furthermore, IS07 insertion into the CpGV genome apparently added new transcription initiation sites to the viral genome. The global analysis of the distribution of two TEs in the genome of CM addressed the influx of mobile TEs from CM to CpGV, a genetic process that contributes to the population diversity of baculoviruses.
Collapse
Affiliation(s)
- Jiangbin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Shili Yang
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany.
| |
Collapse
|
2
|
Pezenti LF, Dionisio JF, Sosa-Gómez DR, de Souza RF, da Rosa R. Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). Genome 2023. [DOI: 10.1139/gen-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Collapse
|
3
|
Puzakova LV, Puzakov MV. Zvezda—A New Subfamily of Tc1-Like Transposons in Asterozoa Genomes. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zidi M, Denis F, Klai K, Chénais B, Caruso A, Djebbi S, Mezghani M, Casse N. Genome-wide characterization of Mariner-like transposons and their derived MITEs in the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). G3 (BETHESDA, MD.) 2021; 11:jkab287. [PMID: 34849769 PMCID: PMC8664452 DOI: 10.1093/g3journal/jkab287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022]
Abstract
The whitefly, Bemisia tabaci is a hemipteran pest of vegetable crops vectoring a broad category of viruses. Currently, this insect pest showed a high adaptability and resistance to almost all the chemical compounds commonly used for its control. In many cases, transposable elements (TEs) contributed to the evolution of host genomic plasticity. This study focuses on the annotation of Mariner-like elements (MLEs) and their derived Miniature Inverted repeat Transposable Elements (MITEs) in the genome of B. tabaci. Two full-length MLEs belonging to mauritiana and irritans subfamilies were detected and named Btmar1.1 and Btmar2.1, respectively. Additionally, 548 defective MLE sequences clustering mainly into 19 different Mariner lineages of mauritiana and irritans subfamilies were identified. Each subfamily showed a significant variation in MLE copy number and size. Furthermore, 71 MITEs were identified as MLEs derivatives that could be mobilized via the potentially active transposases encoded by Btmar 1.1 and Btmar2.1. The vast majority of sequences detected in the whitefly genome present unusual terminal inverted repeats (TIRs) of up to 400 bp in length. However, some exceptions are sequences without TIRs. This feature of the MLEs and their derived MITEs in B. tabaci genome that distinguishes them from all the other MLEs so far described in insects, which have TIRs size ranging from 20 to 40 bp. Overall, our study provides an overview of MLEs, especially those with large TIRs, and their related MITEs, as well as diversity of their families, which will provide a better understanding of the evolution and adaptation of the whitefly genome.
Collapse
Affiliation(s)
- Marwa Zidi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Françoise Denis
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
- Laboratoire BOREA MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, 75231 Paris, France
| | - Khouloud Klai
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Benoît Chénais
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Aurore Caruso
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Maha Mezghani
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Nathalie Casse
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| |
Collapse
|
5
|
Shen D, Gao B, Miskey C, Chen C, Sang Y, Zong W, Wang S, Wang Y, Wang X, Ivics Z, Song C. Multiple Invasions of Visitor, a DD41D Family of Tc1/mariner Transposons, throughout the Evolution of Vertebrates. Genome Biol Evol 2021; 12:1060-1073. [PMID: 32602886 DOI: 10.1093/gbe/evaa135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the DD41D (named as Visitor, VS) family of Tc1/mariner transposons was discovered in Arthropods and Mollusca, the evolution profile of this family is still largely unknown. We found that VS is widespread in the animal kingdom, including 140 species of 18 orders in invertebrates and 30 species of 12 orders in vertebrates, and one land plant species. Our data revealed multiple horizontal transfer events in both invertebrates and vertebrates and invasion into multiple lineages of mammals, including Chiroptera (seven species), Dasyuromorphia/Marsupialia (one species), Didelphimorphia/Marsupialia (one species), Diprotodontia/Marsupialia (two species), and Primates (one species). Phylogenetic analysis revealed a close relationship of VSs to DD37D/maT and DD34D/mariner and confirmed that VSs with the DD40D signature identified previously are not a distinct family but originated from DD41D/VS. Age analysis revealed that the most recent invasion of VSs was found in ray-finned fishes and a toad, followed by relatively young invasions in bats and marsupials, whereas VSs in mammals, jawless fishes, and lizards were mainly represented by ancient copies, suggesting old age. Phylogenetic analyses and comparison of pairwise distances between VSs and recombination-activating gene 1 (RAG1) support horizontal transfer events of VSs in vertebrates. The intact VSs from bats were nonfunctional as determined by the transposition activity assay. Some vertebrate lineages and species were identified as the hot hosts of Tc1/mariner transposons. Overall, our study presents the evolution profile of VSs and suggests that VSs play roles in diversifying and shaping the genomes of diverse animal lineages.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, China.,Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, China
| | - Wencheng Zong
- College of Animal Science & Technology, Yangzhou University, China
| | - Saisai Wang
- College of Animal Science & Technology, Yangzhou University, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, China
| |
Collapse
|
6
|
Chen A, Li Q, Liao P, Zhao Q, Tang S, Wang P, Meng G, Dong Z. Semaphorin-1a-like gene plays an important role in the embryonic development of silkworm, Bombyx mori. PLoS One 2020; 15:e0240193. [PMID: 33007004 PMCID: PMC7531805 DOI: 10.1371/journal.pone.0240193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Fuyin-lethal red egg (Fuyin-lre) is a red egg mutant discovered from the germplasm resource Fuyin of Bombyx mori. The embryo of Fuyin-lre stops developing at the late stage of gastrulation due to chromosome structural variation. In this work, precise mutation sites at both ends of the mutated region were determined, and two inserted sequences with lengths of 1232 bp and 1845 bp were obtained at both ends of the mutation region. Interestingly, a bmmar1 transposon was detected in the inserted 1845 bp sequence. Bmmar1 possesses features of the Tcl/mariner superfamily of transposable elements (TEs), which belongs to class II TEs that use a DNA-mediated "cut and paste" mechanism to transpose. This finding suggests that Fuyin-lre mutation might be related to the "cut and paste" action of bmmar1. The mutation resulted in the deletion of 9 genes in the mutation region, of which the red egg gene re (BMSK0002766) did not affect embryonic development of B. mori, and the BMSK0002765 gene was unexpressed during the early stage of embryonic development. The RNA interference results of the remaining 7 genes suggest that the semaphorin-1a-like gene (BMSK0002764) had a major contribution to the embryonic lethality of Fuyin-lre.
Collapse
Affiliation(s)
- Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- The Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang Shaanxi, China
| | - Qiongyan Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Pengfei Liao
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Qiaoling Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Gang Meng
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhanpeng Dong
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- * E-mail:
| |
Collapse
|
7
|
Ramakrishnan M, Zhou M, Pan C, Hänninen H, Yrjälä K, Vinod KK, Tang D. Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo Ppmar2 Mariner-Like Element. Int J Mol Sci 2019; 20:ijms20153692. [PMID: 31357686 PMCID: PMC6696609 DOI: 10.3390/ijms20153692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mariner-like elements (MLE) are a super-family of DNA transposons widespread in animal and plant genomes. Based on their transposition characteristics, such as random insertions and high-frequency heterogeneous transpositions, several MLEs have been developed to be used as tools in gene tagging and gene therapy. Two active MLEs, Ppmar1 and Ppmar2, have previously been identified in moso bamboo (Phyllostachys edulis). Both of these have a preferential insertion affinity to AT-rich region and their insertion sites are close to random in the host genome. In Ppmar2 element, we studied the affinities of terminal inverted repeats (TIRs) to DNA binding domain (DBD) and their influence on the transposition activity. We could identify two putative boxes in the TIRs which play a significant role in defining the TIR's affinities to the DBD. Seven mutated TIRs were constructed, differing in affinities based on similarities with those of other plant MLEs. Gel mobility shift assays showed that the TIR mutants with mutation sites G669A-C671A had significantly higher affinities than the mutants with mutation sites C657T-A660T. The high-affinity TIRs indicated that their transposition frequency was 1.5-2.0 times higher than that of the wild type TIRs in yeast transposition assays. The MLE mutants with low-affinity TIRs had relatively lower transposition frequency from that of wild types. We conclude that TIR affinity to DBD significantly affects the transposition activity of Ppmar2. The mutant MLEs highly active TIRs constructed in this study can be used as a tool for bamboo genetic studies.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| | - Chunfang Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kunnummal Kurungara Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Rice Breeding and Genetics Research Centre, Aduthurai, Tamil Nadu 612101, India
| | - Dingqin Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| |
Collapse
|