1
|
Park GN, Song S, Choe S, Shin J, An BH, Kim SY, Hyun BH, An DJ. Spike Gene Analysis and Prevalence of Porcine Epidemic Diarrhea Virus from Pigs in South Korea: 2013-2022. Viruses 2023; 15:2165. [PMID: 38005843 PMCID: PMC10674705 DOI: 10.3390/v15112165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
From late 2013-2022, 1131 cases of porcine epidemic diarrhea (PED) were reported to the Korean Animal Health Integrated System (KAHIS). There were four major outbreaks from winter to spring (2013-2014, 2017-2018, 2018-2019, and 2021-2022), with the main outbreaks occurring in Chungnam (CN), Jeonbuk (JB), and Jeju (JJ). Analysis of the complete spike (S) gene of 140/1131 KAHIS PEDV cases nationwide confirmed that 139 belonged to the G2b genotype and 1 to the G2a genotype. Among them, two strains (K17GG1 and K17GB3) were similar to an S INDEL isolated in the United States (strain OH851), and 12 strains had deletions (nucleotides (nt) 3-99) or insertions (12 nt) within the S gene. PEDVs in JJ formed a regionally independent cluster. The substitution rates (substitutions/site/year) were as follows: 1.5952 × 10-3 in CN, 1.8065 × 10-3 in JB, and 1.5113 × 10-3 in JJ. A Bayesian skyline plot showed that the effective population size of PEDs in JJ fell from 2013-2022, whereas in CN and JB it was maintained. Genotyping of 340 Korean PEDV strains, including the 140 PEDVs in this study and 200 Korean reference strains from GenBank, revealed that only the highly pathogenic non-INDEL type (G2b) was dominant from 2020 onwards. Therefore, it is predicted that the incidence of PED will be maintained by the G2b (non-INDEL) genotype.
Collapse
Affiliation(s)
- Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.S.); (S.C.); (J.S.); (S.-Y.K.); (B.-H.H.)
| | - Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.S.); (S.C.); (J.S.); (S.-Y.K.); (B.-H.H.)
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.S.); (S.C.); (J.S.); (S.-Y.K.); (B.-H.H.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.S.); (S.C.); (J.S.); (S.-Y.K.); (B.-H.H.)
| | - Byung-Hyun An
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Song-Yi Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.S.); (S.C.); (J.S.); (S.-Y.K.); (B.-H.H.)
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.S.); (S.C.); (J.S.); (S.-Y.K.); (B.-H.H.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.S.); (S.C.); (J.S.); (S.-Y.K.); (B.-H.H.)
| |
Collapse
|
2
|
He WT, Bollen N, Xu Y, Zhao J, Dellicour S, Yan Z, Gong W, Zhang C, Zhang L, Lu M, Lai A, Suchard MA, Ji X, Tu C, Lemey P, Baele G, Su S. Phylogeography reveals association between swine trade and the spread of porcine epidemic diarrhea virus in China and across the world. Mol Biol Evol 2021; 39:6482749. [PMID: 34951645 PMCID: PMC8826572 DOI: 10.1093/molbev/msab364] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Yi Xu
- China animal disease control center, Ministry of Agriculture, China Beijing
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven.,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Belgium CP160/12 50, av. FD Roosevelt, 1050 Bruxelles
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Wenjie Gong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Cheng Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Letian Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Meng Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, United States Frankfort, Kentucky
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University New Orleans, LA
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| |
Collapse
|
3
|
Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. Sci Rep 2020; 10:19476. [PMID: 33173074 PMCID: PMC7656456 DOI: 10.1038/s41598-020-75207-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
High-throughput farming of animals for an essential purpose such as large scale health and production of hogs is a challenge for the food industry in the modern world. The problem is that the breeding of livestock for fast growth or high yields of meat is often associated with illness and microbial infection that develop under the breeding conditions. Piglet diarrhea is most common pig disease, leading to heavy mortality and thereby economic loss. We proved that chemical drugs can relieve the symptoms of diarrhea in ill piglets, but they do not treat the underlying cause, i.e. significantly altered bacterial gut flora. Using Illumina sequencing of fecal DNA, we showed that the bacterial gut flora of piglets treated with antibiotics remain close to the ill conditions. However, using Illumina sequencing of fecal DNA from piglets treated with a specific Bacillus (Bacillus subtilis Y-15, B. amyloliquefaciens DN6502 and B. licheniformis SDZD02) demonstrated the efficiency of natural bioproducts not only on curing diarrhea, but also on beneficial bacteria to re-establish in the piglet gut. We therefore propose a new natural “medicine” to be explored by the world farm animal agriculture industry, particularly for sustainable improvement of swine livestock production and health.
Collapse
|
4
|
Wang H, Zhang L, Shang Y, Tan R, Ji M, Yue X, Wang N, Liu J, Wang C, Li Y, Zhou T. Emergence and evolution of highly pathogenic porcine epidemic diarrhea virus by natural recombination of a low pathogenic vaccine isolate and a highly pathogenic strain in the spike gene. Virus Evol 2020; 6:veaa049. [PMID: 32913664 PMCID: PMC7474927 DOI: 10.1093/ve/veaa049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Outbreaks of a new variant of porcine epidemic diarrhea virus (PEDV) at the end of 2010 have raised interest in the mutation and recombination of PEDV. A PEDV strain (CN/Liaoning25/2018) isolated from a clinical outbreak of piglet diarrhea contained a 49-bp deletion in the ORF3 gene. This deletion is considered a genetic characteristic of low pathogenic attenuated vaccine strains. However, CN/Liaoning25/2018 was highly pathogenic. Complete genome sequencing, identity analysis, phylogenetic tree construction, and recombination analysis showed that this virus was a recombinant strain containing the Spike (S) gene from the highly pathogenic CN/GDZQ/2014 strain and the remaining genomic regions from the low pathogenic vaccine isolate SQ2014. Histopathology and immunohistochemistry results confirmed that this strain was highly pathogenic and indicated that intestinal epithelial cell vacuolation was positively correlated with the intensity and density of PEDV antigens. A new natural recombination model for PEDV was identified. Our results suggest that new highly pathogenic recombinant strains in the field may be generated by recombination between low pathogenic attenuated live PEDV vaccines and pathogenic circulating PEDV strains. Our findings also highlight that the 49-bp deletion of the ORF3 gene in low pathogenic attenuated vaccine strains will no longer be a reliable standard to differentiate the classical vaccine attenuated from the field strains.
Collapse
Affiliation(s)
- Huinan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Libo Zhang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Yuanbin Shang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingxiang Ji
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Xinliang Yue
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Nannan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Jun Liu
- Beijing Institude of Feed Conrrol, Beijing 100107, China
| | - Chunhua Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|