1
|
Wang H, Shi C, Yang B, Li Q, Liu S. Characterization of the genome and cell invasive phenotype of Vibrio diabolicus Cg5 isolated from mass mortality of Pacific oyster, Crassostrea gigas. Microb Pathog 2024; 186:106466. [PMID: 38036108 DOI: 10.1016/j.micpath.2023.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Vibrio is an important group of aquatic animal pathogens, which has been identified as the main pathogenic factor causing mass summer mortality of Crassostrea gigas in northern China. This study aims to investigate the potential pathogenic mechanisms of Vibrio Cg5 isolate in C. gigas. We sequenced and annotated the genome of Vibrio Cg5 to analyze potential virulence factors. The gentamicin protection assays were performed with C. gigas primary cells to reveal the cell-invasive behavior of Cg5. The genome analysis showed that Cg5 was a strain of human disease-associated pathogen with multiple antibiotic resistance, and four virulence factors associated with intracellular survival were present in the genome. The gentamicin protection assays showed that Cg5 could potentially invade the cells of C. gigas, indicating that Cg5 could be a facultative intracellular pathogen of C. gigas. These results provide insights into the pathogenic mechanism of V. diabolicus, an emerging pathogenic Vibrio on aquatic animals, which would be valuable in preventing and controlling diseases in oysters.
Collapse
Affiliation(s)
- Hebing Wang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Chen Q, Ma B, Xu M, Xu H, Yan Z, Wang F, Wang Y, Huang Z, Yin S, Zhao Y, Wang L, Wu H, Liu X. Comparative proteomics study of exosomes in Vibrio harveyi and Vibrio anguillarum. Microb Pathog 2023:106174. [PMID: 37244489 DOI: 10.1016/j.micpath.2023.106174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Exosomes are a class of extracellular vesicles released by bacteria and contain diverse biomolecules. In this study, we isolated exosomes from Vibrio harveyi and Vibrio anguillarum, which are both serious pathogens in mariculture, using a supercentrifugation method, and the proteins in the exosomes of these two vibrios were analyzed by LC-MS/MS proteomics. Exosome proteins released by V. harveyi and V. anguillarum were different; they not only contained virulence factors (such as lipase and phospholipase in V. harveyi, metalloprotease and hemolysin in V. anguillarum), but also participated in the important life activities of bacteria (such as fatty acid biosynthesis, biosynthesis of antibiotics, carbon metabolism). Subsequently, to verify whether the exosomes participated in bacterial toxicity, after Ruditapes philippinarum was challenged with V. harveyi and V. anguillarum, the corresponding genes of virulence factors from exosomes screened by proteomics were tested by quantitative real-time PCR. All the genes detected were upregulated which suggested that exosomes were involved in vibrio toxicity. The results could provide an effective proteome database for decoding the pathogenic mechanism of vibrios from the exosome perspective.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Bangguo Ma
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Mingzhe Xu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Huiwen Xu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Zimiao Yan
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Fei Wang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yiran Wang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Zitong Huang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Shuchang Yin
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yancui Zhao
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Lei Wang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Hongyan Wu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
3
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
4
|
Ding C, Liu Q, Li J, Ma J, Wang S, Dong Q, Xu D, Qiu J, Wang X. Attenuated Listeria monocytogenes protecting zebrafish (Danio rerio) against Vibrio species challenge. Microb Pathog 2019; 132:38-44. [PMID: 30986451 DOI: 10.1016/j.micpath.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
Abstract
Live attenuated bacteria is a promising candidate vector for the delivery of vaccines in clinic trials. In the field of aquaculture industry, live vector vaccine also could provide long-term and effective protection against fish bacterial diseases. In our previous work, we demonstrated attenuated Listeria monocytogenes (Lm) had the potential to be an aquaculture vaccine vector in cellular level and zebrafish model. To further investigate the potential application of attenuated Lm in aquaculture vaccines, the outer membrane protein K (OmpK) from Vibrio parahaemolyticus (V. parahaemolyticus), as a conservative protective antigen, was fused to a new antigen-delivery system, and introduced into double-gene attenuated Lm strain (EGDe-ΔactA/inlB, Lmdd) to get live-vector vaccine strain Lmdd-OmpK. The strain Lmdd-OmpK showed the stable secrete efficacy of OmpK and was tested the cross-protective immunity against Vibrio species. After intraperitoneal administration in zebrafish, Lmdd and Lmdd-OmpK strain both improved the survival rates of zebrafish infected by V. parahaemolyticus, Vibrio alginolyticus (V. alginolyticus) and Vibrio anguillarum (V. anguillarum), respectively. In summary, attenuated Lm is able to protect zebrafish against Vibrio species challenge, illustrating its potential value for further aquaculture vaccines development.
Collapse
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Jie Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|