1
|
Sun N, Liu W, Shi D, Zhao C, Ou J, Song Y, Yang Z, Sun H, Wu Y, Qin R, Yuan T, Jiao Y, Li L, Cui F. Mapping QTLs with additive and epistatic effects for awn length and their effects on kernel-related traits in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1417588. [PMID: 39233911 PMCID: PMC11371672 DOI: 10.3389/fpls.2024.1417588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Introduction Wheat awns are crucial determinants of wheat yield due to their capacity to photosynthesize and exchange gas. Understanding the genetic basis of awn length (AL) is essential for improving wheat yield in molecular breeding programs. Methods In this study, quantitative trait loci (QTLs) of AL were analyzed using recombinant inbred line (RIL) mapping population referred to as YY-RILs, which was derived from a cross between Yannong 15 (YN15) and Yannong 1212 (YN1212). Results and discussion Seven putative additive QTLs and 30 pairwise epistatic QTLs for AL were identified. Among them, five novel additive QTLs (except qAl-2A and qAl-5A.2) and 30 novel pairwise epistatic QTLs were identified. qAl-5A.1 was repeatedly identified in all five environment datasets, which was considered to be one novel stable QTL for AL with minor additive effects. eqAl-2B.2-2 significantly interacted with eight loci and could be of great importance in regulating awn development. The genes associated with the major stable QTL of qAl-5A.2 and the minor stable QTL of qAl-2A were B1 and WFZP-A, respectively. Awn lengths exhibited significant genetic correlations with kernel weight and kernels per spike, which could affect grain protein content to a lesser extent. This study enhances our understanding of the genetic basis of awn development and identifies novel genes as well as markers for future genetic improvement of wheat yield.
Collapse
Affiliation(s)
- Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Deyang Shi
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Chunhua Zhao
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Jinlian Ou
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Yuanze Song
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Zilin Yang
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Han Sun
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Yongzhen Wu
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Ran Qin
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yanlin Jiao
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Fa Cui
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
2
|
Chang TG, Shi Z, Zhao H, Song Q, He Z, Van Rie J, Den Boer B, Galle A, Zhu XG. 3dCAP-Wheat: An Open-Source Comprehensive Computational Framework Precisely Quantifies Wheat Foliar, Nonfoliar, and Canopy Photosynthesis. PLANT PHENOMICS 2022; 2022:9758148. [PMID: 36059602 PMCID: PMC9394111 DOI: 10.34133/2022/9758148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
Canopy photosynthesis is the sum of photosynthesis of all above-ground photosynthetic tissues. Quantitative roles of nonfoliar tissues in canopy photosynthesis remain elusive due to methodology limitations. Here, we develop the first complete canopy photosynthesis model incorporating all above-ground photosynthetic tissues and validate this model on wheat with state-of-the-art gas exchange measurement facilities. The new model precisely predicts wheat canopy gas exchange rates at different growth stages, weather conditions, and canopy architectural perturbations. Using the model, we systematically study (1) the contribution of both foliar and nonfoliar tissues to wheat canopy photosynthesis and (2) the responses of wheat canopy photosynthesis to plant physiological and architectural changes. We found that (1) at tillering, heading, and milking stages, nonfoliar tissues can contribute ~4, ~32, and ~50% of daily gross canopy photosynthesis (Acgross; ~2, ~15, and ~-13% of daily net canopy photosynthesis, Acnet) and absorb ~6, ~42, and ~60% of total light, respectively; (2) under favorable condition, increasing spike photosynthetic activity, rather than enlarging spike size or awn size, can enhance canopy photosynthesis; (3) covariation in tissue respiratory rate and photosynthetic rate may be a major factor responsible for less than expected increase in daily Acnet; and (4) in general, erect leaves, lower spike position, shorter plant height, and proper plant densities can benefit daily Acnet. Overall, the model, together with the facilities for quantifying plant architecture and tissue gas exchange, provides an integrated platform to study canopy photosynthesis and support rational design of photosynthetically efficient wheat crops.
Collapse
Affiliation(s)
- Tian-Gen Chang
- National Key Laboratory for Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zai Shi
- National Key Laboratory for Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Honglong Zhao
- National Key Laboratory for Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhonghu He
- Insitute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jeroen Van Rie
- BASF Belgium Coordination Center-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Bart Den Boer
- BASF Belgium Coordination Center-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alexander Galle
- BASF Belgium Coordination Center-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Phenotype and Genotype Interaction Underlying Distributive Characteristic for Awn Development in Rice. PLANTS 2022; 11:plants11070851. [PMID: 35406831 PMCID: PMC9002577 DOI: 10.3390/plants11070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
As a wild ancestor of cultivated rice, Oryza rufipogon is domesticated into cultivated rice Oryza sativa, many agricultural traits are newly created or disappear. In particular, in wild rice, awn protects from predators and is easily blown by the wind and used as a means of propagation. However, awns gradually disappeared as they were breeding from wild rice to cultivated rice. Since awn development is disadvantageous to rice yield, it is important to understand the genetic basis related to awn development. In addition, characterization of the genes associated with awn development is helpful in analyzing the genetic relationships of rice from ancient times to the present for the regulatory mechanisms of awn formation. QTL analysis identified RM14330-RM218 on chromosome 3 using a 120 Cheongcheong/Nagdong double haploid population. Through screening of genes related to awn development in RM-14330-RM218, it is indicated that OsDRPq3 is a causal gene that can be involved in awn development. OsDRPq3 transcription level is maintained high in long awn and less yield populations during the panicle formation stage, the period during awn development. Moreover, the sequence of OsDRPq3 has high homology with the drooping protein leaf. This study provides a new resource for phylogenetic research of rice and exploration of awn development.
Collapse
|
4
|
Puttamadanayaka S, Harikrishna, Balaramaiah M, Biradar S, Parmeshwarappa SV, Sinha N, Prasad SVS, Mishra PC, Jain N, Singh PK, Singh GP, Prabhu KV. Mapping genomic regions of moisture deficit stress tolerance using backcross inbred lines in wheat (Triticum aestivum L.). Sci Rep 2020; 10:21646. [PMID: 33303897 PMCID: PMC7729395 DOI: 10.1038/s41598-020-78671-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Identification of markers associated with major physiological and yield component traits under moisture deficit stress conditions in preferred donor lines paves the way for marker-assisted selection (MAS). In the present study, a set of 183 backcross inbred lines (BILs) derived from the cross HD2733/2*C306 were genotyped using 35K Axiom genotyping array and SSR markers. The multi-trait, multi-location field phenotyping of BILs was done at three locations covering two major wheat growing zones of India, north-western plains zone (NWPZ) and central zone (CZ) under varying moisture regimes. A linkage map was constructed using 705 SNPs and 86 SSR polymorphic markers. A total of 43 genomic regions and QTL × QTL epistatic interactions were identified for 14 physiological and yield component traits, including NDVI, chlorophyll content, CT, CL, PH, GWPS, TGW and GY. Chromosomes 2A, 5D, 5A and 4B harbors greater number of QTLs for these traits. Seven Stable QTLs were identified across environment for DH (QDh.iari_6D), GWPS (QGWPS.iari_5B), PH (QPh.iari_4B-2, QPh.iari_4B-3) and NDVI (QNdvi1.iari_5D, QNdvi3.iari_5A). Nine genomic regions identified carrying major QTLs for CL, NDVI, RWC, FLA, PH, TGW and biomass explaining 10.32–28.35% of the phenotypic variance. The co-segregation of QTLs of physiological traits with yield component traits indicate the pleiotropic effects and their usefulness in the breeding programme. Our findings will be useful in dissecting genetic nature and marker-assisted selection for moisture deficit stress tolerance in wheat.
Collapse
Affiliation(s)
| | - Harikrishna
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Manu Balaramaiah
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Sunil Biradar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | | | - Nivedita Sinha
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - S V Sai Prasad
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - P C Mishra
- Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh, 482 004, India
| | - Neelu Jain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | | | | | | |
Collapse
|
5
|
Ntakirutimana F, Xie W. Morphological and Genetic Mechanisms Underlying Awn Development in Monocotyledonous Grasses. Genes (Basel) 2019; 10:E573. [PMID: 31366144 PMCID: PMC6723108 DOI: 10.3390/genes10080573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023] Open
Abstract
The identification of biological mechanisms underlying the development of complex quantitative traits, including those that contribute to plant architecture, yield and quality potential, and seed dispersal, is a major focus in the evolutionary biology and plant breeding. The awn, a bristle-like extension from the lemma in the floret, is one of the distinct morphological and physiological traits in grass species. Awns are taught as an evolutionary trait assisting seed dispersal and germination and increasing photosynthesis. Awn development seems to be complex process, involving dramatic phenotypic and molecular changes. Although recent advances investigated the underlying morphological and molecular genetic factors of awn development, there is little agreement about how these factors interact during awn formation and how this interaction affects variation of awn morphology. Consequently, the developmental sequence of the awn is not yet well understood. Here, we review awn morphological and histological features, awn development pathways, and molecular processes of awn development. We argue that morphological and molecular genetic mechanisms of awn development previously studied in major cereal crops, such as barley, wheat, and rice, offered intriguing insights helping to characterize this process in a comparative approach. Applying such an approach will aid to deeply understand factors involved in awn development in grass species.
Collapse
Affiliation(s)
- Fabrice Ntakirutimana
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|