1
|
Palittapongarnpim P, Tantivitayakul P, Aiewsakun P, Mahasirimongkol S, Jaemsai B. Genomic Interactions Between Mycobacterium tuberculosis and Humans. Annu Rev Genomics Hum Genet 2024; 25:183-209. [PMID: 38640230 DOI: 10.1146/annurev-genom-021623-101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Mycobacterium tuberculosis is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including Mycobacterium africanum, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand;
| | - Pakorn Aiewsakun
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand;
| | - Bharkbhoom Jaemsai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| |
Collapse
|
2
|
Ji C, Cai H, Jin X, Yin K, Zhao D, Feng Z, Liu L. Identification of Immune Infiltrating Cell-Related Biomarkers in Early Gastric Cancer Progression. Technol Cancer Res Treat 2024; 23:15330338241262724. [PMID: 38860335 PMCID: PMC11168250 DOI: 10.1177/15330338241262724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES Gastric cancer (GC) is one of the most prevalent malignancies worldwide, and early detection is crucial for improving patient survival rates. We aimed to identify immune infiltrating cell-related biomarkers in early gastric cancer (EGC) progression. METHODS The GSE55696 and GSE130823 datasets with low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and EGC samples were downloaded from the Gene Expression Omnibus database to perform an observational study. Immune infiltration analysis was performed by single sample gene set enrichment analysis and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data. Weighted gene co-expression network analysis was used to explore the co-expression modules and genes, and further enrichment analysis was performed on these genes. A protein-protein interaction (PPI) network of these genes was constructed to identify biomarkers associated with EGC progression. Screened hub genes were validated by the rank sum test and reverse transcription quantitative polymerase chain reaction. RESULTS Immune scores were significantly elevated in EGC samples compared to LGIN and HGIN samples. The green-yellow module exhibited the strongest correlation with both immune score and disease progression. The 87 genes within this module were associated with the chemokine signaling pathways, the PI3K-Akt signaling pathways, leukocyte transendothelial migration, and Ras signaling pathways. Through PPI network analysis, the hub genes identified were protein tyrosine phosphatase receptor-type C (PTPRC), pleckstrin, CD53, CD48, lymphocyte cytosolic protein 1 (LCP1), hematopoietic cell-specific Lyn substrate 1, IKAROS Family Zinc Finger 1, Bruton tyrosine kinase, and Vav guanine nucleotide exchange factor 1. Notably, CD48, LCP1, and PTPRC showed high expression levels in EGC samples, with the remaining hub genes demonstrating a similar expression trend. CONCLUSION This study identified 9 immune cell-related biomarkers that may be actively involved in the progression of EGC and serve as potential targets for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Chenguang Ji
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Hongmei Cai
- Deparment of Oncology, Hebei Chest Hospital, Shijiazhuang, Hebei, P.R. China
| | - Xiaoxu Jin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Kaige Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhijie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Li Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
3
|
Tang J, Zhao Z, Zhou J, Jiao L, Zhou W, Ying B, Yang Y. Multiple CD59 Polymorphisms in Chinese Patients with Mycobacterium tuberculosis Infection. J Immunol Res 2023; 2023:1216048. [PMID: 37050931 PMCID: PMC10083888 DOI: 10.1155/2023/1216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023] Open
Abstract
Background and Objective. Tuberculosis (TB) is a major threat to human health, especially in developing countries. Its susceptibility and progression depend on interactions between mycobacterium tuberculosis, host immune system, and genetic and environmental factors. Up to now, many studies have presented the association between TB susceptibility and host genetic polymorphisms, but never regarding CD59 gene, which is an essential complement regulator. This study investigated the relationship between multiple CD59 single nucleotide polymorphisms (SNPs) and susceptibility to TB among Chinese patients. Methods. A case–control study was conducted to investigate the SNPs at CD59 rs1047581, rs7046, rs2231460, rs184251026, rs41275164, rs831633, rs704700, rs41275166, and rs10768024 by sequence-specific primer-polymerase chain reaction (SSP-PCR) in 900 tuberculosis patients and 1,534 controls. Results. The minor allele frequencies at rs2231460, rs184251026, rs41275164, and rs41275166 were extremely low both in the Cases (0.00%–0.61%) and in the Controls (0.07%–0.43%), comparatively at rs1047581, rs7046, rs831633, rs704700, and rs10768024 were notably higher both in the Cases (8.23%–48.39%) and in the Controls (8.57%–47.16%). Among the nine SNPs, only homozygous CC genotype at rs10768024 showed a significant protective effect against TB than homozygous TT genotype (OR(95% CI) = 0.59(0.38, 0.91), χ2 = 5.779,
), and homozygous TT and heterozygous CT genotypes showed a significant risk of TB infection in the recessive model (OR(95% CI) = 1.68(1.10, 2.56), χ2 = 5.769,
). Further analysis verified that rs10768024 CC genotype independently related to TB susceptibility (OR(95% CI) = 0.60(0.39, 0.91), Wald χ2 = 5.664,
) in multivariate logistic regression analysis, and its genetic mutation was independent of the other SNPs (r2 = 0.00–0.20) in haplotype analysis. Conclusions. The first investigation of the CD59 gene and susceptibility to TB suggests a significant risk with homozygous TT and heterozygous CT genotypes at rs10768024 loci. The homozygous CC mutation at rs10768024 loci showed a significant protection against TB susceptibility.
Collapse
Affiliation(s)
- Jie Tang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Yang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| |
Collapse
|
4
|
Genetic polymorphism of ADAM17 and decreased bilirubin levels are associated with allergic march in the Korean population. BMC Med Genomics 2022; 15:21. [PMID: 35130903 PMCID: PMC8822644 DOI: 10.1186/s12920-022-01170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background The “allergic march” refers to changes in the frequency and intensity of allergic diseases with age. Classically, the allergic march begins with atopic dermatitis in infancy and leads to asthma and rhinitis as it continues. There are many factors that induce the allergic march; however, TNF-α may play an important role in inducing inflammation. Therefore, the therapeutic potential of TNF alpha-targeting agents is being considered for allergic march treatment. Methods We performed a correlation study to determine whether genetic polymorphisms of ADAM17 and clinical serum values between allergic and normal groups affect disease development by using the cohort data of the Korean genome epidemiologic research project. Gene association study was performed using PLINK version 1.07 (http://pngu.mgh.harvard.edu/–purcell/plink) and other statistical analysis was performed using PASW Statistics (version 18.0, SPSS Inc. Chicago, IL, USA). Results ADAM17 (also called TNF-α converting enzyme or TACE) showed a statistically significant association with the allergic march. The 13 and 8 SNPs in ADAM17 were significantly associated with asthma and allergies, respectively. Among them, on average, SNP of rs6432011 showed the greatest statistical correlation with asthma (P = 0.00041, OR = 1.95, 95% CI 1.35–2.82) and allergies (P = 0.02918, OR = 1.35, 95% CI 1.03–1.78). The effect of SNPs in ADAM17 on transcription factor binding was confirmed using RegulomeDB. The six SNPs are located in the genomic expression quantitative trait loci (eQTL) region and can affect transcription factor binding and gene expression. In clinical serum analysis, bilirubin levels were significantly decreased in the allergic group. The multivariate logistic regression analysis revealed that the low-bilirubin groups indicated a 3.22-fold increase in the prevalence of asthma compared with the high-bilirubin group. Conclusions The ADAM17 gene and low bilirubin levels are associated with the allergic march in the Korean population, which can provide new guidelines for managing this disease progression phenomena. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01170-7.
Collapse
|
5
|
Becic A, Leifeld J, Shaukat J, Hollmann M. Tetraspanins as Potential Modulators of Glutamatergic Synaptic Function. Front Mol Neurosci 2022; 14:801882. [PMID: 35046772 PMCID: PMC8761850 DOI: 10.3389/fnmol.2021.801882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Tetraspanins (Tspans) comprise a membrane protein family structurally defined by four transmembrane domains and intracellular N and C termini that is found in almost all cell types and tissues of eukaryotes. Moreover, they are involved in a bewildering multitude of diverse biological processes such as cell adhesion, motility, protein trafficking, signaling, proliferation, and regulation of the immune system. Beside their physiological roles, they are linked to many pathophysiological phenomena, including tumor progression regulation, HIV-1 replication, diabetes, and hepatitis. Tetraspanins are involved in the formation of extensive protein networks, through interactions not only with themselves but also with numerous other specific proteins, including regulatory proteins in the central nervous system (CNS). Interestingly, recent studies showed that Tspan7 impacts dendritic spine formation, glutamatergic synaptic transmission and plasticity, and that Tspan6 is correlated with epilepsy and intellectual disability (formerly known as mental retardation), highlighting the importance of particular tetraspanins and their involvement in critical processes in the CNS. In this review, we summarize the current knowledge of tetraspanin functions in the brain, with a particular focus on their impact on glutamatergic neurotransmission. In addition, we compare available resolved structures of tetraspanin family members to those of auxiliary proteins of glutamate receptors that are known for their modulatory effects.
Collapse
|
6
|
Guo M, Dai Y, Jiang L, Gao J. Bioinformatics Analysis of the Mechanisms of Diabetic Nephropathy via Novel Biomarkers and Competing Endogenous RNA Network. Front Endocrinol (Lausanne) 2022; 13:934022. [PMID: 35909518 PMCID: PMC9329782 DOI: 10.3389/fendo.2022.934022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the common chronic complications of diabetes with unclear molecular mechanisms, which is associated with end-stage renal disease (ESRD) and chronic kidney disease (CKD). Our study intended to construct a competing endogenous RNA (ceRNA) network via bioinformatics analysis to determine the potential molecular mechanisms of DN pathogenesis. The microarray datasets (GSE30122 and GSE30529) were downloaded from the Gene Expression Omnibus database to find differentially expressed genes (DEGs). GSE51674 and GSE155188 datasets were used to identified the differentially expressed microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), respectively. The DEGs between normal and DN renal tissues were performed using the Linear Models for Microarray (limma) package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to reveal the mechanisms of DEGs in the progression of DN. The protein-protein interactions (PPI) of DEGs were carried out by STRING database. The lncRNA-miRNA-messenger RNA (mRNA) ceRNA network was constructed and visualized via Cytoscape on the basis of the interaction generated through the miRDB and TargetScan databases. A total of 94 significantly upregulated and 14 downregulated mRNAs, 31 upregulated and 121 downregulated miRNAs, and nine upregulated and 81 downregulated lncRNAs were identified. GO and KEGG pathways enriched in several functions and expression pathways, such as inflammatory response, immune response, identical protein binding, nuclear factor kappa b (NF-κB) signaling pathway, and PI3K-Akt signaling pathway. Based on the analysis of the ceRNA network, five differentially expressed lncRNAs (DElncRNAs) (SNHG6, KCNMB2-AS1, LINC00520, DANCR, and PCAT6), five DEmiRNAs (miR-130b-5p, miR-326, miR-374a-3p, miR-577, and miR-944), and five DEmRNAs (PTPRC, CD53, IRF8, IL10RA, and LAPTM5) were demonstrated to be related to the pathogenesis of DN. The hub genes were validated by using receiver operating characteristic curve (ROC) and real-time PCR (RT-PCR). Our research identified hub genes related to the potential mechanism of DN and provided new lncRNA-miRNA-mRNA ceRNA network that contributed to diagnostic and potential therapeutic targets for DN.
Collapse
Affiliation(s)
- Mingfei Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaji Dai
- Department of Pharmacy, Anhui No.2 Provincial People’s Hospital, Hefei, China
- *Correspondence: Yaji Dai,
| | - Lei Jiang
- Department of Pharmacy, Anhui No.2 Provincial People’s Hospital, Hefei, China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Karam J, Méresse S, Kremer L, Daher W. The roles of tetraspanins in bacterial infections. Cell Microbiol 2020; 22:e13260. [PMID: 32902857 DOI: 10.1111/cmi.13260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Tetraspanins, a wide family composed of 33 transmembrane proteins, are associated with different types of proteins through which they arbitrate important cellular processes such as fusion, adhesion, invasion, tissue differentiation and immunological responses. Tetraspanins share a comparable structural design, which consists of four hydrophobic transmembrane domains with cytoplasmic and extracellular loops. They cooperate with different proteins, including other tetraspanins, receptors or signalling proteins to compose functional complexes at the cell surface, designated tetraspanin-enriched microdomains (TEM). Increasing evidences establish that tetraspanins are exploited by numerous intracellular pathogens as a doorway for entering and replicating within human cells. Although previous surveys focused mainly on viruses and parasites, it is now becoming clear that bacteria interact with tetraspanins, using TEM as a "gateway" to infection. In this review, we examine the biological functions of tetraspanins that are relevant to bacterial infective procedures and consider the available data that reveal how different bacteria benefit from host cell tetraspanins in infection and in the pathogenesis of diseases. We will also emphasise the stimulating potentials of targeting tetraspanins for preventing bacterial infectious diseases, using specific neutralising antibodies or anti-adhesion peptide-based therapies. Such innovative therapeutic opportunities may deliver alternatives for fighting difficult-to-manage and drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | | | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| |
Collapse
|
8
|
Kim SS, Lee SI, Jin HS, Park S. Tuberculosis risk is associated with genetic polymorphisms in the LRP2, CUBN, and VDR genes. Genes Genomics 2020; 42:1189-1196. [PMID: 32803705 DOI: 10.1007/s13258-020-00971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Vitamin D (Vit. D) is used extensively during tuberculosis treatment. Low levels of serum Vit. D increase the risk of active tuberculosis development. Altered expression of the proteins involved in Vit. D metabolism impairs cathelicidin production, thereby increasing the host susceptibility to tuberculosis. OBJECTIVE We are trying to investigate whether single nucleotide polymorphisms (SNPs) in LRP2, CUBN, and VDR genes could affect tuberculosis development. METHODS We included participants of the Korean Association Resource (KARE), part of the Korean Genome and Epidemiology Study (KoGES), and used their recorded data. A total of 8840 people (4182 men and 4658 women) were eligible subjects. The 5-kb regions from the ends of transcripts of GC, LRP2, CUBN, and VDR genes were amplified to select 13, 47, 70, and 15 SNPs, respectively. For association analysis and statistical analysis, PLINK version 1.07 and PASW Statistics version 18.0 were used. RESULTS Significant correlation was observed in 11, 2, and 1 SNPs in LRP2, CUBN, and VDR genes. The effect of rs6747692 of LRP2 on transcription factor binding was confirmed using RegulomeDB. We confirmed that rs2239182 of VDR is located in the genomic eQTL region and can affect transcription factor binding and gene expression. CONCLUSIONS Genetic polymorphisms in genes encoding proteins involved in Vit. D metabolism influence immune system components. Therefore, such polymorphisms may influence the susceptibility to Mycobacterium tuberculosis invasion and alter the defense mechanisms against Mycobacterium tuberculosis infection. The correlation between genetic variation and tuberculosis development can provide new guidelines for the management of tuberculosis.
Collapse
Affiliation(s)
- Sung-Soo Kim
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea
| | - Sang In Lee
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea
| | - Sangjung Park
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea.
| |
Collapse
|
9
|
Zhao B, Wang D, Liu Y, Zhang X, Wan Z, Wang J, Su T, Duan L, Wang Y, Zhang Y, Zhao Y. Six-Gene Signature Associated with Immune Cells in the Progression of Atherosclerosis Discovered by Comprehensive Bioinformatics Analyses. Cardiovasc Ther 2020; 2020:1230513. [PMID: 32821283 PMCID: PMC7416237 DOI: 10.1155/2020/1230513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a multifaceted disease, atherosclerosis is often characterized by the formation and accumulation of plaque anchored to the inner wall of the arteries and causes some cardiovascular diseases and vascular embolism. Numerous studies have reported on the pathogenesis of atherosclerosis. However, fewer studies focused on both genes and immune cells, and the correlation of genes and immune cells was evaluated via comprehensive bioinformatics analyses. METHODS 29 samples of atherosclerosis-related gene expression profiling, including 16 human advanced atherosclerosis plaque (AA) and 13 human early atherosclerosis plaque (EA) samples from the Gene Expression Omnibus (GEO) database, were analyzed to get differentially expressed genes (DEGs) and the construction of protein and protein interaction (PPI) networks. Besides, we detected the relative fraction of 22 immune cell types in atherosclerosis by using the deconvolution algorithm of "cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT)." Ultimately, based on the significantly changed types of immune cells, we executed the correlation analysis between DEGs and immune cells to discover the potential genes and pathways associated with immune cells. RESULTS We identified 17 module genes and 6 types of significantly changed immune cells. Correlation analysis showed that the relative percentage of T cell CD8 has negative correlation with the C1QB expression (R = -0.63, p = 0.02), and the relative percentage of macrophage M2 has positive correlation with the CD86 expression (R = 0.57, p = 0.041) in EA. Meanwhile, four gene expressions (CD53, C1QC, NCF2, and ITGAM) have a high correlation with the percentages of T cell CD8 and macrophages (M0 and M2) in AA samples. CONCLUSIONS In this study, we suggested that the progression of atherosclerosis might be related to CD86, C1QB, CD53, C1QC, NCF2, and ITGAM and that it plays a role in regulating immune-competent cells such as T cell CD8 and macrophages M0 and M2. These results will enable studies of the potential genes associated with immune cells in the progression of atherosclerosis, as well as provide insight for discovering new treatments and drugs.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Dan Wang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yanling Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohong Zhang
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Zheng Wan
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Jinling Wang
- Department of Emergency, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Ting Su
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston 02114, USA
| | - Linshan Duan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Medical Reproductive Auxiliary Specialty, People's Hospital of Jiuquan City, Gansu, China
| | - Yuehua Zhang
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
10
|
Azad AK, Lloyd C, Sadee W, Schlesinger LS. Challenges of Immune Response Diversity in the Human Population Concerning New Tuberculosis Diagnostics, Therapies, and Vaccines. Front Cell Infect Microbiol 2020; 10:139. [PMID: 32322562 PMCID: PMC7156588 DOI: 10.3389/fcimb.2020.00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Universal approaches to the prevention and treatment of human diseases fail to take into account profound immune diversity resulting from genetic variations across populations. Personalized or precision medicine takes into account individual lifestyle, environment, and biology (genetics and immune status) and is being adopted in several disease intervention strategies such as cancer and heart disease. However, its application in infectious diseases, particularly global diseases such as tuberculosis (TB), is far more complex and in a state of infancy. Here, we discuss the impact of human genetic variations on immune responses and how they relate to failures seen in current TB diagnostic, therapy, and vaccine approaches across populations. We offer our perspective on the challenges and potential for more refined approaches going forward.
Collapse
Affiliation(s)
- Abul K Azad
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Christopher Lloyd
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Wolfgang Sadee
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Larry S Schlesinger
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
11
|
Lim HS, Lee SI, Park S. Association between Tuberculosis Case and CD44Gene Polymorphism. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.3.323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hee-Seon Lim
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | - Sang-In Lee
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | - Sangjung Park
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| |
Collapse
|