1
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
2
|
Nong C, Chen Y, Yang H, Chen N, Tian C, Li S, Chen H. Phenotypic sorting of individual male and female intersex Cherax quadricarinatus and analysis of molecular differences in the gonadal transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101194. [PMID: 38246110 DOI: 10.1016/j.cbd.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Cherax quadricarinatus exhibit sexual dimorphism, with males outpacing females in size specification and growth rate. However, there is limited understanding of the molecular mechanisms underlying sex determination and sex differentiation in crustaceans. To study the differences between intersex individuals and normal individuals, this study counted the proportion of intersex individuals in the natural population, collected the proportion of 7 different phenotypes in 200 intersex individuals, and observed the differences in tissue sections. RNA-seq was used to study the different changes in the transcriptome of normal and intersex gonads. The results showed that: the percentage of intersex in the natural population was 1.5 %, and the percentage of different types of intersex ranged from 0.5 % to 22.5 %; the sections revealed that the development of normal ovaries was stagnant at the primary oocyte stage when intersex individuals with ovaries were present; We screened for pathways and genes that may be associated with gonadal development and sex, including ovarian steroid synthesis, estrogen signaling pathway, oocyte meiosis, progesterone-mediated oocyte maturation, etc. Relevant genes including tra2a, dmrta2, ccnb2, foxl2, and smad4. This study provides an important molecular basis for sex determination, sex-controlled breeding, and unisex breeding in red crayfish.
Collapse
Affiliation(s)
- Chuntai Nong
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yibin Chen
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China
| | - Hao Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Nanxiong Chen
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China.; Zhanjiang Ocean and Fishery Development Research Center, Zhanjiang, China.
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Havwii agriculture group Co., Ltd, Zhanjiang 524266, China.
| |
Collapse
|
3
|
Chen H, Qiu Y, Wang Z, Teng H, Chen Z, Kong Y, Wang Z. Bridging therapy improves functional outcomes and reduces 90-day mortality compared with direct endovascular thrombectomy in patients with acute posterior ischemic stroke: a systematic review and meta-analysis. Neurol Sci 2024; 45:495-506. [PMID: 37792113 DOI: 10.1007/s10072-023-07096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND It remains unclear whether bridging therapy can achieve better neurologic outcomes than direct endovascular thrombectomy (EVT) in patients with posterior ischemic stroke. METHODS We systematically searched PubMed, EMBASE, and Cochrane databases with posterior artery occlusion treated with bridging therapy vs. EVT. Efficacy was assessed based on functional independence at 90 days and successful recanalization, whereas safety was assessed by mortality, rate of symptomatic intracranial hemorrhage (sICH), and occurrence of any hemorrhage. All data were analyzed with Review Manager software v5.3 and the risk of bias was determined using the Methodological Index for Non-randomized Studies. RESULTS We included 17 studies with a total of 3278 patients (1211 in the bridging therapy group and 2067 in the EVT group). Patients in the bridging group had a better functional outcome at 90 days, as evidenced by a higher proportion with a Modified Rankin Scale (mRS) score of 0-2 compared with the EVT group (odds ratio (OR) = 1.83, 95% confidence interval (CI): 1.54-2.19, P < 0.01), while no difference in mRS score of 0-3 (OR = 1.18, 95% CI: 0.96-1.45, P = 0.11). Patients in the bridging therapy group also had lower 90-day mortality rate (OR = 0.75, 95% CI: 0.59-0.95, P = 0.02). There were no significant differences between groups in rates of successful recanalization (OR = 0.96, 95% CI: 0.74-1.25, P = 0.77), sICH (OR = 1.27, 95% CI: 0.86-1.89, P = 0.24), and hemorrhage (OR = 1.22, 95% CI: 0.60-2.50, P = 0.58). CONCLUSIONS Among patients with posterior ischemic stroke, bridging therapy may be superior to EVT in achieving a good functional outcome and lowering the mortality without increasing the risks of hemorrhage.
Collapse
Affiliation(s)
- Huiru Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Department of Neurology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China
| | - Youjia Qiu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Teng
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
4
|
Hua J, Zhong C, Chen W, Fu J, Wang J, Wang Q, Zhu G, Li Y, Tao Y, Zhang M, Dong Y, Lu S, Liu W, Qiang J. Single nucleotide polymorphism SNP19140160 A > C is a potential breeding locus for fast-growth largemouth bass (Micropterus salmoides). BMC Genomics 2024; 25:64. [PMID: 38229016 DOI: 10.1186/s12864-024-09962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Largemouth bass (Micropterus salmoides) has significant economic value as a high-yielding fish species in China's freshwater aquaculture industry. Determining the major genes related to growth traits and identifying molecular markers associated with these traits serve as the foundation for breeding strategies involving gene pyramiding. In this study, we screened restriction-site associated DNA sequencing (RAD-seq) data to identify single nucleotide polymorphism (SNP) loci potentially associated with extreme growth differences between fast-growth and slow-growth groups in the F1 generation of a largemouth bass population. RESULTS We subsequently identified associations between these loci and specific candidate genes related to four key growth traits (body weight, body length, body height, and body thickness) based on SNP genotyping. In total, 4,196,486 high-quality SNPs were distributed across 23 chromosomes. Using a population-specific genotype frequency threshold of 0.7, we identified 30 potential SNPs associated with growth traits. Among the 30 SNPs, SNP19140160, SNP9639603, SNP9639605, and SNP23355498 showed significant associations; three of them (SNP9639603, SNP9639605, and SNP23355498) were significantly associated with one trait, body length, in the F1 generation, and one (SNP19140160) was significantly linked with four traits (body weight, height, length, and thickness) in the F1 generation. The markers SNP19140160 and SNP23355498 were located near two growth candidate genes, fam174b and ppip5k1b, respectively, and these candidate genes were closely linked with growth, development, and feeding. The average body weight of the group with four dominant genotypes at these SNP loci in the F1 generation population (703.86 g) was 19.63% higher than that of the group without dominant genotypes at these loci (588.36 g). CONCLUSIONS Thus, these four markers could be used to construct a population with dominant genotypes at loci related to fast growth. These findings demonstrate how markers can be used to identify genes related to fast growth, and will be useful for molecular marker-assisted selection in the breeding of high-quality largemouth bass.
Collapse
Grants
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- No. JBGS [2021] 130 Project of Seed Industry Revitalization in Jiangsu Province, China
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- 2022-ZYXT-07 Major Technology Collaborative Promotion Plan for Largemouth bass Industry in Jiangsu Province
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- NO. 2023JBFR02 the central public-interest scientific institution basal research fund, freshwater fisheries research center, CAFS
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
- No. SNG2021009 the Suzhou Science and Technology Program
Collapse
Affiliation(s)
- Jixiang Hua
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chunyi Zhong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenhua Chen
- Suzhou Aquatic Technology Extension Station, Suzhou, 215004, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jian Wang
- Guangxi Xinjian Investment Group Limited Company, Hechi, 530201, China
| | - Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Geyan Zhu
- Suzhou Aquatic Technology Extension Station, Suzhou, 215004, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Maoyou Zhang
- Suzhou Aquatic Technology Extension Station, Suzhou, 215004, China
| | - Yalun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenting Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
5
|
Liu L, Liu X, Fu Y, Fang W, Wang C. Whole-body transcriptome analysis provides insights into the cascade of sequential expression events involved in growth, immunity, and metabolism during the molting cycle in Scylla paramamosain. Sci Rep 2022; 12:11395. [PMID: 35794121 PMCID: PMC9259733 DOI: 10.1038/s41598-022-14783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms underlying the dynamic process of crab molting are still poorly understood at the individual level. We investigated global expression changes in the mud crab, Scylla paramamosain, at the transcriptome level and revealed a cascade of sequential expression events for genes involved in various aspects of the molting process using whole-body sequencing of juvenile crabs. RNA-sequencing (RNA-seq) produced 139.49 Gb of clean reads and 20,436 differentially expressed genes (DEGs) among different molting stages. The expression patterns for genes involved in several molecular events critical for molting, such as cuticle reconstruction, cytoskeletal structure remodeling, hormone regulation, immune responses, and metabolism, were characterized and considered as mechanisms underlying molting in S. paramamosain. Among these genes, we identified 10,695 DEGs in adjacent molting stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that significantly enriched pathways included structural constituents of cuticle, binding and chitin metabolic processes, steroid hormone biosynthesis, insulin resistance, and amino sugar metabolic processes. The expression profiles of 12 functional genes detected via RNA-seq were corroborated via real-time RT-PCR assays. The results revealed gene expression profiles across the molting cycle and identified possible activation pathways for future investigation of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lei Liu
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Xiao Liu
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Wei Fang
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Chunlin Wang
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China.
| |
Collapse
|
6
|
Liu L, Fu Y, Xiao L, Liu X, Fang W, Wang C. iTRAQ-based quantitative proteomic analysis of the hepatopancreas in Scylla paramamosain during the molting cycle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100870. [PMID: 34237491 DOI: 10.1016/j.cbd.2021.100870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/17/2023]
Abstract
The hepatopancreas is the key organ involved in energy storage, immune response, and metabolism during crustacean molting, yet the underlying molecular mechanisms in the hepatopancreas that regulate molting remain unknown. In the present study, we conducted a comprehensive proteomic analysis in the hepatopancreas and quantified 1527 proteins, of which 193 changed significantly in abundance among three molting stages (pre-molt: PrM, post-molt: PoM, and inter-molt: InM) of Scylla paramamosain using iTRAQ-coupled LC-MS/MS. Ten exoskeleton and cuticle reconstruction proteins, such as chitinase, cuticle protein and myosin heavy chain, were found change significantly in abundance between PoM and PrM. Six energy metabolism proteins such as mitochondrial cytochrome c oxidase, cytochrome b-c1 and cAMP-dependent protein kinase with positive loadings showed a higher abundance in InM than PoM. In addition, all differentially abundance proteins (DAPs) were annotated for GO function and KEGG pathway analysis. GO analysis demonstrated function subcategories mainly including thiamine metabolism, complement and coagulation cascades, endocrine, shigellosis, salmonella infection, and other factor-regulated calcium reabsorption. The KEGG pathway enrichment analysis indicated that the DAPs were mainly involved in reconstruction of the exoskeleton and cuticle, energy reserves, metabolism, and immune response during the molting process. The results for the proteins and key pathways involved in the molting process provide fundamental molecular evidence that will improve our understanding of morphological and metabolism variation in the molting cycle and will serve as a potential blueprint for future study on molecular mechanism of molting in crustaceans.
Collapse
Affiliation(s)
- Lei Liu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315832, China.
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Lichan Xiao
- Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Xiao Liu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Wei Fang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
7
|
Physiological and gene expression profiles of leg muscle provide insights into molting-dependent growth of Chinese mitten crab (Eriocheir sinensis). REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Zheng X, Zhang L, Jiang W, Abasubong KP, Zhang C, Zhang D, Li X, Jiang G, Chi C, Liu W. Effects of dietary icariin supplementation on the ovary development-related transcriptome of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100756. [PMID: 33197858 DOI: 10.1016/j.cbd.2020.100756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is an economically important aquaculture species in China, with distinct differences in ovarian maturation status between crabs fed with natural diets and artificial diets during the listing period, thus, leading to selling price differentiation. Our previous study showed that dietary supplementation with 100 mg/kg icariin can effectively promote ovarian development of E. sinensis. However, the internal molecular mechanism has not yet been elucidated because of a lack of comprehensive genome sequence information. We compared the ovary transcriptomes of E. sinensis fed with two diets containing 0 and 100 mg/kg ICA using the BGISEQ-500 platform. This yielded 12.54 Gb clean bases and 54,794 unigenes, 13,832 of which were found to be differentially expressed after icariin exposure. Twenty pathways closely related to gonadal development were selected through KEGG analysis. Seven differentially expressed genes relevant to vitellogenesis and oocyte maturation (serine/threonine-protein kinase mos-like, Eg2, cytoplasmic polyadenylation element-binding protein, cyclin B, vitellogenin 1, cathepsin D, and juvenile hormone esterase-like carboxylesterase 1) were validated by qRT-PCR, and four proteins (MEK1/2, ERK1/2, Cyclin B and Cdc2) associated with the progesterone mediated oocyte maturation pathway (i.e., MAPK/MPF pathway) were analyzed by western-blot. The results showed that icariin could promote the synthesis, processing and deposition of vitellogenin in oocytes, and that it also has the potential to promote oocyte maturation (resumption of Meiosis I) by altering the expression of the relevant genes and proteins.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Kenneth P Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Identification of a transforming growth factor-β type I receptor transcript in Eriocheir sinensis and its molting-related expression in muscle tissues. Mol Biol Rep 2019; 47:77-86. [PMID: 31571110 DOI: 10.1007/s11033-019-05108-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is conserved across animals, and knowledge of its roles during the molt cycle in crustaceans is presently very limited. This study investigates the roles of the TGF-β receptor in molting-related muscle growth in Eriocheir sinensis. Using the RT-PCR and RACE techniques, we obtained a 1722 bp cDNA sequence encoding a transforming growth factor-β type I receptor in Eriocheir sinensis, designated EsTGFBRI, which contains a 124 bp 5'-untranslated region, a 20 bp partial 3'-untranslated region and a 1578 bp open reading frame encoding 525 amino acids. The deduced EsTGFBRI contains an N-terminal 24 amino acid signal peptide, an activin type I and II receptor domain, a transmembrane helix region, a glycine-serine-rich motif, and a conserved serine/threonine kinase catalytic domain including an activation loop. The qRT-PCR results showed that EsTGFBRI gene was highly expressed in the intermolt testis and ovary in mature crabs. In juvenile crabs, the mRNA levels of EsTGFBRI in claw and abdominal muscles in the later premolt D3-4 stage were significantly higher than those in the intermolt C and postmolt A-B stages. There was no significant change in EsTGFBRI mRNA levels in walking leg muscles during the molt cycle. The results suggest that EsTGFBRI is probably play roles in molting-related muscle growth in E. sinensis. This study provides a necessary basis for elucidating the functions of TGF-β-like signaling mediated by TGFBRI in molting-related muscle growth in crustaceans.
Collapse
|