1
|
Eom YS, Ko BS, Shah FH, Kim SJ. E3 Ubiquitin Ligase Constitutive Photomorphogenic 1 Regulates Differentiation and Inflammation via MAPK Signaling Pathway in Rabbit Articular Chondrocytes. DNA Cell Biol 2023; 42:239-247. [PMID: 36940307 DOI: 10.1089/dna.2022.0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
Constitutive photomorphogenic 1 (COP1), is an E3 ubiquitin ligase that plays a role in the regulation of various cellular processes including cell growth, differentiation, and survival in mammals. In certain conditions such as overexpression or loss of function, COP1 acts either as an oncogenic protein or as a tumor suppressor by targeting specific proteins for ubiquitination-mediated degradation. However, the precise role of COP1 has not been well studied in primary articular chondrocytes. In this study, we investigated the role of COP1 in chondrocyte differentiation. Western blotting and reverse transcription-polymerase chain reaction analysis demonstrated that COP1 overexpression reduced type II collagen expression, promoted cyclooxygenase 2 (COX-2) expression, and reduced sulfated proteoglycan synthesis, as detected by Alcian blue staining. Upon siRNA treatment, revived type II collagen, sulfated proteoglycan production, and decreased COX-2 expression. Phosphorylation of p38 kinase and ERK-1/-2 signaling pathways was regulated by COP1 upon cDNA and siRNA transfection in chondrocytes. The inhibition of the p38 kinase and ERK-1/-2 signaling pathways with SB203580 and PD98059 ameliorated the expression of type II collagen and COX-2 in transfected chondrocytes, thus suggesting that COP1 regulates differentiation and inflammation in rabbit articular chondrocytes via the p38 kinase and ERK-1/-2 signaling pathway.
Collapse
Affiliation(s)
- Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Byung Su Ko
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| |
Collapse
|
2
|
COP1 Acts as a Ubiquitin Ligase for PCDH9 Ubiquitination and Degradation in Human Glioma. Mol Neurobiol 2022; 59:2378-2388. [PMID: 35084653 DOI: 10.1007/s12035-021-02634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Constitutive photomorphogenic 1 (COP1, also known as RFWD2), a ring-finger-type E3 ubiquitin ligase, has been reported to play a pivotal role in the regulation of cell growth, apoptosis, and DNA repair. Accumulating evidence has suggested that COP1 plays a role in tumorigenesis by triggering the ubiquitination and degradation of its substrates, but the potential mechanism remains unclear. In this study, COP1 was used as a bait in a yeast two-hybrid experiment to screen COP1-interacting proteins in a human brain cDNA library, and the results indicated that protocadherin 9 (PCDH9) was a potential binding protein of COP1. The interaction between and colocalization of COP1 and PCDH9 was further confirmed by coimmunoprecipitation (co-IP) assay and immunofluorescent staining. Subsequently, we demonstrated that COP1 acted as an E3 ligase to promote the ubiquitination and degradation of PCDH9 through the proteasome pathway in glioma cells. Furthermore, we identified that the type of COP1 mediated PCDH9 ubiquitination was Lys48-linked polyubiquitination. Finally, we found that the COP1 protein level was inversely correlated with the PCDH9 protein level in human glioma tissues. Taken together, our results suggest that COP1 is an E3 ubiquitin ligase for PCDH9 and reveal an important mechanism for PCDH9 regulation in human glioma.
Collapse
|
3
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
4
|
Guo M, Ding P, Zhu Z, Fan L, Zhou Y, Yang S, Yang Y, Gu C. Targeting RFWD2 as an Effective Strategy to Inhibit Cellular Proliferation and Overcome Drug Resistance to Proteasome Inhibitor in Multiple Myeloma. Front Cell Dev Biol 2021; 9:675939. [PMID: 33968945 PMCID: PMC8097052 DOI: 10.3389/fcell.2021.675939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The potential to overcome resistance to proteasome inhibitors is greatly related with ubiquitin-proteasome system during multiple myeloma (MM) treatment process. The constitutive photomorphogenic 1 (RFWD2), referred to an E3 ubiquitin ligase, has been identified as an oncogene in multiple cancers, yet important questions on the role of RFWD2 in MM biology and treatment remain unclear. Here we demonstrated that MM patients with elevated RFWD2 expression achieved adverse outcome and drug resistance by analyzing gene expression profiling. Moreover, we proved that RFWD2 participated in the process of cell cycle, cell growth and death in MM by mass spectrometry analysis. In vitro study indicated that inducible knockdown of RFWD2 hindered cellular growth and triggered apoptosis in MM cells. Mechanism study revealed that RFWD2 controlled MM cellular proliferation via regulating the degradation of P27 rather than P53. Further exploration unveiled that RFWD2 meditated P27 ubiquitination via interacting with RCHY1, which served as an E3 ubiquitin ligase of P27. Finally, in vivo study illustrated that blocking RFWD2 in BTZ-resistant MM cells overcame the drug resistance in a myeloma xenograft mouse model. Taken together, these findings provide compelling evidence for prompting that targeting RFWD2 may be an effective strategy to inhibit cellular proliferation and overcome drug resistance to proteasome inhibitor in MM.
Collapse
Affiliation(s)
- Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Large Data Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Zhu
- College of Health and Rehabilitation & College of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyan Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Large Data Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
6
|
Cellular Functions of OCT-3/4 Regulated by Ubiquitination in Proliferating Cells. Cancers (Basel) 2020; 12:cancers12030663. [PMID: 32178477 PMCID: PMC7139964 DOI: 10.3390/cancers12030663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Octamer-binding transcription factor 3/4 (OCT-3/4), which is involved in the tumorigenesis of somatic cancers, has diverse functions during cancer development. Overexpression of OCT-3/4 has been detected in various human somatic tumors, indicating that OCT-3/4 activation may contribute to the development and progression of cancers. Stem cells can undergo self-renewal, pluripotency, and reprogramming with the help of at least four transcription factors, OCT-3/4, SRY box-containing gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC. Of these, OCT-3/4 plays a critical role in maintenance of undifferentiated state of embryonic stem cells (ESCs) and in production of induced pluripotent stem cells (iPSCs). Stem cells can undergo partitioning through mitosis and separate into specific cell types, three embryonic germ layers: the endoderm, the mesoderm, and the trophectoderm. It has been demonstrated that the stability of OCT-3/4 is mediated by the ubiquitin-proteasome system (UPS), which is one of the key cellular mechanisms for cellular homeostasis. The framework of the mechanism is simple, but the proteolytic machinery is complicated. Ubiquitination promotes protein degradation, and ubiquitination of OCT-3/4 leads to regulation of cellular proliferation and differentiation. Therefore, it is expected that OCT-3/4 may play a key role in proliferation and differentiation of proliferating cells.
Collapse
|