1
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Jax E, Franchini P, Sekar V, Ottenburghs J, Monné Parera D, Kellenberger RT, Magor KE, Müller I, Wikelski M, Kraus RHS. Comparative genomics of the waterfowl innate immune system. Mol Biol Evol 2022; 39:6649919. [PMID: 35880574 PMCID: PMC9356732 DOI: 10.1093/molbev/msac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.
Collapse
Affiliation(s)
- Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Vaishnovi Sekar
- Department of Biology, Lund University, Lund, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Jente Ottenburghs
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands.,Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | | | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Inge Müller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Chung O, Jung YE, Lee KW, An YJ, Kim J, Roh YR, Bhak J, Park K, Weber JA, Cheong J, Cha SS, Lee JH, Yim HS. The Analyses of Cetacean Virus-Responsive Genes Reveal Evolutionary Marks in Mucosal Immunity-Associated Genes. Biochem Genet 2022; 60:2299-2312. [PMID: 35334059 PMCID: PMC8949644 DOI: 10.1007/s10528-022-10221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Viruses are the most common and abundant organisms in the marine environment. To better understand how cetaceans have adapted to this virus-rich environment, we compared cetacean virus-responsive genes to those from terrestrial mammals. We identified virus-responsive gene sequences in seven species of cetaceans, which we compared with orthologous sequences in seven terrestrial mammals. As a result of evolution analysis using the branch model and the branch-site model, 21 genes were selected using at least one model. IFN-ε, an antiviral cytokine expressed at mucous membranes, and its receptor IFNAR1 contain cetacean-specific amino acid substitutions that might change the interaction between the two proteins and lead to regulation of the immune system against viruses. Cetacean-specific amino acid substitutions in IL-6, IL-27, and the signal transducer and activator of transcription (STAT)1 are also predicted to alter the mucosal immune response of cetaceans. Since mucosal membranes are the first line of defense against the external environment and are involved in immune tolerance, our analysis of cetacean virus-responsive genes suggests that genes with cetacean-specific mutations in mucosal immunity-related genes play an important role in the protection and/or regulation of immune responses against viruses.
Collapse
Affiliation(s)
| | - Ye-Eun Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyeong Won Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea
| | - Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea
| | - Jungeun Kim
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea
| | - Yoo-Rim Roh
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 306-350, Republic of Korea
| | - Jong Bhak
- Clinomics, Ulsan, 44919, Republic of Korea.,Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kiejung Park
- Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Jessica A Weber
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 306-350, Republic of Korea.
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea.
| |
Collapse
|
4
|
Senevirathna JDM, Asakawa S. Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales. Life (Basel) 2021; 11:364. [PMID: 33923876 PMCID: PMC8074237 DOI: 10.3390/life11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid synthesis pathways of toothed whales have evolved since their movement from the terrestrial to marine environment. The synthesis and function of these endogenous lipids and affecting factors are still little understood. In this review, we focused on different omics approaches and techniques to investigate lipid metabolism and radiation impacts on lipids in toothed whales. The selected literature was screened, and capacities, possibilities, and future approaches for identifying unusual lipid synthesis pathways by omics were evaluated. Omics approaches were categorized into the four major disciplines: lipidomics, transcriptomics, genomics, and proteomics. Genomics and transcriptomics can together identify genes related to unique lipid synthesis. As lipids interact with proteins in the animal body, lipidomics, and proteomics can correlate by creating lipid-binding proteome maps to elucidate metabolism pathways. In lipidomics studies, recent mass spectroscopic methods can address lipid profiles; however, the determination of structures of lipids are challenging. As an environmental stress, the acoustic radiation has a significant effect on the alteration of lipid profiles. Radiation studies in different omics approaches revealed the necessity of multi-omics applications. This review concluded that a combination of many of the omics areas may elucidate the metabolism of lipids and possible hazards on lipids in toothed whales by radiation.
Collapse
Affiliation(s)
- Jayan D. M. Senevirathna
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
5
|
Integrated Full-Length Transcriptome and RNA-Seq to Identify Immune System Genes from the Skin of Sperm Whale ( Physeter macrocephalus). Genes (Basel) 2021; 12:genes12020233. [PMID: 33562637 PMCID: PMC7914425 DOI: 10.3390/genes12020233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cetaceans are a group of secondary aquatic mammals whose ancestors returned to the ocean from land, and during evolution, their immune systems adapted to the aquatic environment. Their skin, as the primary barrier to environmental pathogens, supposedly evolved to adapt to a new living environment. However, the immune system in the skin of cetaceans and the associated molecular mechanisms are still largely unknown. To better understand the immune system, we extracted RNA from the sperm whale's (Physeter macrocephalus) skin and performed PacBio full-length sequencing and RNA-seq sequencing. We obtained a total of 96,350 full-length transcripts with an average length of 1705 bp and detected 5150 genes that were associated with 21 immune-related pathways by gene annotation enrichment analysis. Moreover, we found 89 encoding genes corresponding to 33 proteins were annotated in the NOD-like receptor (NLR)-signaling pathway, including NOD1, NOD2, RIP2, and NF-kB genes, which were discussed in detail and predicted to play essential roles in the immune system of the sperm whale. Furthermore, NOD1 was highly conservative during evolution by the sequence comparison and phylogenetic tree. These results provide new information about the immune system in the skin of cetaceans, as well as the evolution of immune-related genes.
Collapse
|
6
|
XU JINGCHENG, GUO SHANSHAN, TANG XINSHENG, CAI YAFEI. Correlation of SNPs in Myeloid differentiation-2 (MD-2) gene with the susceptibility to clinical mastitis in Chinese Holstein dairy cows. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i9.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myeloid differentiation-2 (MD-2), as an essential component of the CD14-TLR4/MD-2 receptor complex, is critical in identifying bacterial Lipopolysaccharide (LPS) and activating innate immune responses. To evaluate the relationship between MD-2 polymorphisms (including 5′ end and exon regions) and clinical mastitis, population genetic analysis was performed via PCR single strand conformation polymorphism (PCR-SSCP) and direct sequencing in Chinese Holstein dairy cows. Eleven pairs of primer PCR products for SSCP analysis: six pairs of primers (P1-P6) for the 5′-end, four (P7–P10) for the exon regions, and one (P11) for 3′-untranslational region. There were six SSCP bands (named: EE, EF, FF, EQ, EM and EN genotype) in the PCR amplification products of primer P1, two bands in P4 (CD and DD) and three bands in P5 (AA, AB, and BB). Total of five (g.-2173 C/G, g.-2148 C/T, g.-2089 G/T, g.-555 G/A and g.-121 C/A) single nucleotides polymorphism sites (SNPs) were identified in 5′-end of the MD-2 gene. Data showed that SNPs g.-555 (G/A) had significant differences (P<0.01). However, only Gram-negative bacteria (e.g. E. coli) were screened in the milk of the clinical mastitis cows, indicating that this SNPs g.-555 (G/A) in MD-2 gene may play an important role in susceptibility to clinical mastitis infected with Gram-negative bacteria in Chinese Holstein dairy cows.
Collapse
|