1
|
Shi Y, Chen J, Yang R, Wu H, Wang Z, Yang W, Cui J, Zhang Y, Liu C, Cheng Y, Liu Y, Shan J, Wang D, Yang L, Hu C, Zhao J, Cao R, Tan B, Xu K, Si M, Li H, Mao R, Li L, Kang X, Wang L. Iruplinalkib (WX-0593) Versus Crizotinib in ALK TKI-Naive Locally Advanced or Metastatic ALK-Positive NSCLC: Interim Analysis of a Randomized, Open-Label, Phase 3 Study (INSPIRE). J Thorac Oncol 2024; 19:912-927. [PMID: 38280448 DOI: 10.1016/j.jtho.2024.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Iruplinalkib (WX-0593) is a new-generation, potent ALK tyrosine kinase inhibitor (TKI) that has been found to have systemic and central nervous system (CNS) efficacy in ALK-positive NSCLC. We compared the efficacy and safety of iruplinalkib with crizotinib in patients with ALK TKI-naive, locally advanced or metastatic ALK-positive NSCLC. METHODS In this open-label, randomized, multicenter, phase 3 study, patients with ALK-positive NSCLC were randomly assigned to receive iruplinalkib 180 mg once daily (7-d run-in at 60 mg once daily) or crizotinib 250 mg twice daily. The primary end point was progression-free survival (PFS) assessed by Independent Review Committee (IRC) per Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points included PFS by investigator, objective response rate (ORR), time to response, duration of response, intracranial ORR and time to CNS progression by IRC and investigator, overall survival, and safety. An interim analysis was planned after approximately 70% (134 events) of all 192 expected PFS events assessed by IRC were observed. Efficacy was analyzed in the intention-to-treat population. Safety was assessed in the safety population, which included all randomized patients who received at least one dose of the study drugs. This study is registered with Center for Drug Evaluation of China National Medical Products Administration (CTR20191231) and Clinicaltrials.gov (NCT04632758). RESULTS From September 4, 2019, to December 2, 2020, a total of 292 patients were randomized and treated; 143 with iruplinalkib and 149 with crizotinib. At this interim analysis (145 events), the median follow-up time was 26.7 months (range: 3.7-37.7) in the iruplinalkib group and 25.9 months (range: 0.5-35.9) in the crizotinib group. The PFS assessed by IRC was significantly longer among patients in the iruplinalkib group (median PFS, 27.7 mo [95% confidence interval (CI): 26.3-not estimable] versus 14.6 mo [95% CI: 11.1-16.5] in the crizotinib group; hazard ratio, 0.34 [98.02% CI: 0.23-0.52], p < 0.0001). The ORR assessed by IRC was 93.0% (95% CI: 87.5-96.6) in the iruplinalkib group and 89.3% (95% CI: 83.1-93.7) in the crizotinib group. The intracranial ORR was 90.9% (10 of 11, 95% CI: 58.7-99.8) in the iruplinalkib group and 60.0% (nine of 15, 95% CI: 32.3-83.7) in the crizotinib group for patients with measurable baseline CNS metastases. Incidence of grade 3 or 4 treatment-related adverse events was 51.7% in the iruplinalkib group and 49.7% in the crizotinib group. CONCLUSIONS Iruplinalkib was found to have significantly improved PFS and improved intracranial antitumor activity versus crizotinib. Iruplinalkib may be a new treatment option for patients with advanced ALK-positive and ALK TKI-naive NSCLC. FUNDING This study was funded by Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China, and partly supported by the National Science and Technology Major Project for Key New Drug Development (2017ZX09304015).
Collapse
Affiliation(s)
- Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China.
| | - Jianhua Chen
- Thoracic Medicine Department I, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Runxiang Yang
- The Second Department of Medical Oncology, Yunnan Cancer Hospital, Kunming, People's Republic of China
| | - Hongbo Wu
- Respiratory Intervention Department, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Zhehai Wang
- Respiratory Medical Oncology Ward II, Shandong Cancer Hospital & Institute, Jinan, People's Republic of China
| | - Weihua Yang
- Department of Respiratory, Shanxi Provincial Cancer Hospital, Taiyuan, People's Republic of China
| | - Jiuwei Cui
- Oncology Department, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yiping Zhang
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Chunling Liu
- Pulmonary Medicine Ward II, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Ying Cheng
- Thoracic Oncology Department, Jilin Cancer Hospital, Changchun, People's Republic of China
| | - Yunpeng Liu
- Department of Internal Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jinlu Shan
- Oncology Department, Army Medical Center of PLA, Chongqing, People's Republic of China
| | - Donglin Wang
- Department of Internal Medical Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Lei Yang
- Department of Respiratory Oncology, Gansu Province Cancer Hospital, Lanzhou, People's Republic of China
| | - Changlu Hu
- Ward 4 of Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, People's Republic of China
| | - Jian Zhao
- Thoracic Surgery Department 1, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ranhua Cao
- Department of Internal Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Ke Xu
- Department of Respiratory, Anhui Provincial Cancer Hospital, Hefei, People's Republic of China
| | - Meimei Si
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Hui Li
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Ruifeng Mao
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Lingyan Li
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Xiaoyan Kang
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Lin Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| |
Collapse
|
2
|
Wu Z, Zhang Z, Zhang D, Li Z. Remarkable response to third-generation EGFR-TKI plus crizotinib in a patient with pulmonary adenocarcinoma harboring EGFR and ROS1 co-mutation: a case report. Front Oncol 2024; 14:1357230. [PMID: 38476366 PMCID: PMC10927992 DOI: 10.3389/fonc.2024.1357230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background Driver oncogene mutations, such as c-ros oncogene 1 (ROS1) and epidermal growth factor receptor (EGFR) were previously believed to be mutually exclusive in non-small cell lung cancer (NSCLC). Only sporadic cases of ROS1 and EGFR co-mutations have been reported. Hence, appropriate treatment options for these patients are still controversial. Case presentation A 48-year-old female patient presented at our hospital complaining of a persistent cough that had been ongoing for a month. A chest computed tomography showed a mass in the left lung along with hilar and mediastinal lymphadenopathy. Pathological analysis of bronchoscopic biopsy and lung mass puncture confirmed the presence of lung adenocarcinoma. The patient was diagnosed with stage IIIC left lung adenocarcinoma with a clinical stage of cT2N3M0. Next-generation sequencing analysis conducted at both puncture sites revealed an EFGR 19 deletion mutation combined with ROS1 rearrangement. The lung mass exhibited a higher mutation abundance. Treatment with a combination of third-generation EGFR tyrosine kinase inhibitors (TKIs) and crizotinib yielded satisfactory results. During the follow-up period, the mass significantly reduced and almost disappeared. Conclusion The co-mutation of EGFR and ROS1 is a rare phenomenon. Nevertheless, the combination of EGFR-TKI and crizotinib treatment appears to hold promise in providing positive results for patients, with manageable side effects. This therapeutic approach has the potential to enhance patients' overall prognosis.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Orthopedics, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zelin Zhang
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zengyan Li
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
3
|
Tostes K, Siqueira AP, Reis RM, Leal LF, Arantes LMRB. Biomarkers for Immune Checkpoint Inhibitor Response in NSCLC: Current Developments and Applicability. Int J Mol Sci 2023; 24:11887. [PMID: 37569262 PMCID: PMC10418476 DOI: 10.3390/ijms241511887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer has the highest mortality rate among all cancer types, resulting in over 1.8 million deaths annually. Immunotherapy utilizing immune checkpoint inhibitors (ICIs) has revolutionized the treatment of non-small cell lung cancer (NSCLC). ICIs, predominantly monoclonal antibodies, modulate co-stimulatory and co-inhibitory signals crucial for maintaining immune tolerance. Despite significant therapeutic advancements in NSCLC, patients still face challenges such as disease progression, recurrence, and high mortality rates. Therefore, there is a need for predictive biomarkers that can guide lung cancer treatment strategies. Currently, programmed death-ligand 1 (PD-L1) expression is the only established biomarker for predicting ICI response. However, its accuracy and robustness are not consistently reliable. This review provides an overview of potential biomarkers currently under development or in the validation stage that hold promise in improving the classification of responders and non-responders to ICI therapy in the near future.
Collapse
Affiliation(s)
- Katiane Tostes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Aléxia Polo Siqueira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos 14785-002, São Paulo, Brazil
| | | |
Collapse
|
4
|
Hofman V, Goffinet S, Bontoux C, Long-Mira E, Lassalle S, Ilié M, Hofman P. A Real-World Experience from a Single Center (LPCE, Nice, France) Highlights the Urgent Need to Abandon Immunohistochemistry for ROS1 Rearrangement Screening of Advanced Non-Squamous Non-Small Cell Lung Cancer. J Pers Med 2023; 13:jpm13050810. [PMID: 37240980 DOI: 10.3390/jpm13050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The detection of ROS1 rearrangements in metastatic non-squamous non-small cell lung carcinoma (NS-NSCLC) permits administration of efficient targeted therapy. Detection is based on a testing algorithm associated with ROS1 immunohistochemistry (IHC) screening followed by ROS1 FISH and/or next generation sequencing (NGS) to confirm positivity. However, (i) ROS1 rearrangements are rare (1-2% of NS-NSCLC), (ii) the specificity of ROS1 IHC is not optimal, and (iii) ROS1 FISH is not widely available, making this algorithm challenging to interpret time-consuming. We evaluated RNA NGS, which was used as reflex testing for ROS1 rearrangements in NS-NSCLC with the aim of replacing ROS1 IHC as a screening method. ROS1 IHC and RNA NGS were prospectively performed in 810 NS-NSCLC. Positive results were analyzed by ROS1 FISH. ROS1 IHC was positive in 36/810 (4.4%) cases that showed variable staining intensity while NGS detected ROS1 rearrangements in 16/810 (1.9%) cases. ROS1 FISH was positive in 15/810 (1.8%) of ROS1 IHC positive cases and in all positive ROS1 NGS cases. Obtaining both ROS1 IHC and ROS1 FISH reports took an average of 6 days, while obtaining ROS1 IHC and RNA NGS reports took an average of 3 days. These results showed that systematic screening for the ROS1 status using IHC must be replaced by NGS reflex testing.
Collapse
Affiliation(s)
- Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Samantha Goffinet
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, FHU OncoAge, Pasteur Hospital, 06000 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, 06000 Nice, France
- Team 4, IRCAN Inserm U1081, CNRS 7284, Université Côte d'Azur, 06100 Nice, France
| |
Collapse
|