1
|
Hashtjin YA, Raeeszadeh M, Khanghah AP. Interaction of Heavy Metals (Cadmium and Selenium) in an Experimental Study on Goldfish: Hematobiochemical Changes and Oxidative Stress. J Xenobiot 2025; 15:57. [PMID: 40278162 PMCID: PMC12028637 DOI: 10.3390/jox15020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Heavy metal interactions within aquatic ecosystems significantly affect fish physiology. This study evaluated the protective role of selenium against cadmium-induced hematological, biochemical, and electrophoretic alterations in goldfish. METHODS A total of 120 goldfish individuals were divided into four groups: control, cadmium chloride-treated (2.8 mg/L), sodium selenite-treated (2 mg/L), and a combined cadmium and selenium-treated group. After 14 days, blood samples were collected and analyzed for hematological parameters, biochemical markers, and serum protein electrophoresis. RESULTS Cadmium exposure led to significant reductions in red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (HCT) (p < 0.001). Selenium supplementation alleviated these declines and improved overall hematological function. Additionally, cadmium exposure decreased albumin and total protein levels while elevating aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, indicating liver damage. Selenium co-treatment reduced cadmium accumulation and mitigated liver toxicity. Elevated urea and creatinine levels in cadmium-exposed fish were also significantly lowered in the combined treatment group (p < 0.0001). Furthermore, selenium supplementation enhanced antioxidant defense mechanisms by increasing catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity while reducing malondialdehyde (MDA) levels, effectively counteracting cadmium-induced oxidative stress. CONCLUSION Sodium selenite at a dose of 2 mg/L effectively mitigated the toxic effects of cadmium chloride on hematological, biochemical, and oxidative stress markers in goldfish, demonstrating its protective potential against heavy metal toxicity.
Collapse
Affiliation(s)
- Yasaman Aghaei Hashtjin
- Graduate of Faculty of Veterinary Sciences, Sa.C., Islamic Azad University, Sanandaj 618, Iran;
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sa.C., Islamic Azad University, Sanandaj 618, Iran
| | - Ali Parsa Khanghah
- Department of Aquatic Animal Health and Disease, Sa.C., Islamic Azad University, Sanandaj 618, Iran;
| |
Collapse
|
2
|
Uddin MH, Ritu JR, Putnala SK, Rachamalla M, Chivers DP, Niyogi S. Selenium toxicity in fishes: A current perspective. CHEMOSPHERE 2024; 364:143214. [PMID: 39214409 DOI: 10.1016/j.chemosphere.2024.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activities have led to increased levels of contaminants that pose significant threats to aquatic organisms, particularly fishes. One such contaminant is Selenium (Se), a metalloid which is released by various industrial activities including mining and fossil fuel combustion. Selenium is crucial for various physiological functions, however it can bioaccumulate and become toxic at elevated concentrations. Given that fishes are key predators in aquatic ecosystems and a major protein source for humans, Se accumulation raises considerable ecological and food safety concerns. Selenium induces toxicity at the cellular level by disrupting the balance between reactive oxygen species (ROS) production and antioxidant capacity leading to oxidative damage. Chronic exposure to elevated Se impairs a wide range of critical physiological functions including metabolism, growth and reproduction. Selenium is also a potent teratogen and induces various types of adverse developmental effects in fishes, mainly due to its maternal transfer to the eggs. Moreover, that can persist across generations. Furthermore, Se-induced oxidative stress in the brain is a major driver of its neurotoxicity, which leads to impairment of several ecologically important behaviours in fishes including cognition and memory functions, social preference and interactions, and anxiety response. Our review provides an up-to-date and in-depth analysis of the various adverse physiological effects of Se in fishes, while identifying knowledge gaps that need to be addressed in future research for greater insights into the impact of Se in aquatic ecosystems.
Collapse
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
3
|
Choi CY, Kim MJ, Song JA, Kho KH. Water Hardness Improves the Antioxidant Response of Zinc-Exposed Goldfish ( Carassius auratus). BIOLOGY 2023; 12:biology12020289. [PMID: 36829564 PMCID: PMC9953692 DOI: 10.3390/biology12020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Zinc (Zn), a heavy metal, is an essential element in fish; however, exposure to high concentrations causes oxidative stress. Water hardness reduces oxidative stress reactions caused by heavy metals. To confirm the effect of water hardness on oxidative stress caused by Zn, goldfish were exposed to various Zn concentrations (1.0, 2.0, and 5.0 mg/L) and water hardness (soft (S), hard (H), and very hard (V)). The activity of superoxide dismutase (SOD) and catalase (CAT) in plasma increased with 1.0, 2.0, and 5.0 mg/L of Zn, and decreased with H and V water hardness. The levels of H2O2 and lipid peroxide (LPO) increased with Zn above 1.0 mg/L and decreased with H and V of water hardness. Caspase-9 mRNA expression in the liver increased after 7 and 14 days of Zn exposure and decreased with H and V water hardness. It was confirmed that DNA damage was less dependent on H and V water hardness. Based on the results of this study, at least 1.0 mg/L Zn causes oxidative stress in goldfish, and a high level of apoptosis occurs when exposed for more than 7 days. It appears that the oxidative stress generated by Zn can be alleviated by water hardness of at least 270 mg/L CaCO3. This study provides information on the relationship between the antioxidant response caused by heavy metals and water hardness in fish.
Collapse
Affiliation(s)
- Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
- Correspondence:
| | - Min Ju Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jin Ah Song
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
4
|
Gao X, Wang X, Wang X, Fang Y, Cao S, Huang B, Chen H, Xing R, Liu B. Toxicity in Takifugu rubripes exposed to acute ammonia: Effects on immune responses, brain neurotransmitter levels, and thyroid endocrine hormones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114050. [PMID: 36063614 DOI: 10.1016/j.ecoenv.2022.114050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Exposure to ammonia can cause convulsions, coma, and death. In this study, we investigate the effects of ammonia exposure on immunoregulatory and neuroendocrine changes in Takifugu rubripes. Fish were sampled at 0, 12, 24, 48, and 96 h following exposure to different ammonia concentrations (0, 5, 50, 100, and 150 mg/L). Our results showed that exposure to ammonia significantly reduced the concentrations of C3, C4, IgM, and LZM whereas the heat shock protein 70 and 90 levels significantly increased. In addition, the transcription levels of Mn-SOD, CAT, GRx, and GR in the liver were significantly upregulated following exposure to low ammonia concertation, however, downregulated with increased exposure time. These findings suggest that ammonia poisoning causes oxidative damage and suppresses plasma immunity. Ammonia exposure also resulted in the elevation and depletion of the T3 and T4 levels, respectively. Furthermore, ammonia stress induced an increase in the corticotrophin-releasing hormone, adrenocorticotropic hormone, and cortisol levels, and a decrease in dopamine, noradrenaline, and 5-hydroxytryptamine levels in the brain, illustrating that ammonia poisoning can disrupt the endocrine and neurotransmitter systems. Our results provide insights into the mechanisms underlying the neurotoxic effects of ammonia exposure, which helps to assess the ecological and environmental health risks of this contaminant in marine fish.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Xi Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; College of Fisheries and Life Science, Ocean University, Shanghai 201306, People's Republic of China
| | - Xinyi Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; College of Fisheries and Life Science, Ocean University, Shanghai 201306, People's Republic of China
| | - Yingying Fang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Shuquan Cao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Haibin Chen
- Yuhai Hongqi Ocean Engineering Co. LTD, Rizhao 276800, People's Republic of China
| | - Rui Xing
- Yuhai Hongqi Ocean Engineering Co. LTD, Rizhao 276800, People's Republic of China
| | - Baoliang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China.
| |
Collapse
|
5
|
Chen H, Li J, Yan L, Cao J, Li D, Huang GY, Shi WJ, Dong W, Zha J, Ying GG, Zhong H, Wang Z, Huang Y, Luo Y, Xie L. Subchronic effects of dietary selenium yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2020; 97:283-293. [PMID: 31863904 DOI: 10.1016/j.fsi.2019.12.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Selenium is an essential element but toxic at high levels in animals. The effects of Se on growth performance and the immune system in Nile tilapia remain inconclusive. In this study, Nile tilapia Oreochromis niloticus was fed on selenium yeast (Se(Y))- and selenite (Se(IV))-enriched feed at 0, 3, 6, and 12 μg/g (dry wt) for 45 and 90 d. The growth, bioaccumulation, biochemical markers related to antioxidant, immunological, nervous and digestive systems were evaluated in various fish tissues (liver, intestine, kidney, muscle, brain, spleen, gills). The results showed that the accumulation of Se(Y) was 1.3-2 folds of Se(IV) in most tissues. The growth of tilapia was enhanced by both Se(Y) and Se(IV) at 3 μg/g after 90 d, with Se(Y) better than Se(IV) in tilapia feed. After 45 d, the levels of lipid peroxidation, the activity of the antioxidant enzymes, and the transcriptional levels of the immune related genes (IL-1β, IFN-γ and TNF-α) and stress proteins (HSP70 and MT) were enhanced in all treatments, except that of MT in the 12 μg/g Se(Y) group. In addition, both Se species inhibited the activity of acetylcholinesterase (AChE) in the brain and one digestive enzyme α-glucosidase (α-Glu) in the intestine at 12 μg/g. However, after 90 d, the effects on most biochemical markers were less pronounced, implying a possible acclimation after prolonged duration. The results demonstrate Se is beneficial to O. niloticus at low levels and toxic at elevated levels. The immunostimulation by Se might be greatly weakened after long term feeding Se-enriched feed. This study helps to better understand the effects of Se on the antioxidant and immune systems and to establish the optimal Se levels in the feed and duration for O. niloticus.
Collapse
Affiliation(s)
- Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jian Li
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research, Nanning, 530022, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Huan Zhong
- Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Zhifang Wang
- Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yifan Huang
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research, Nanning, 530022, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Cockrem JF, Bahry MA, Chowdhury VS. Cortisol responses of goldfish (Carassius auratus) to air exposure, chasing, and increased water temperature. Gen Comp Endocrinol 2019; 270:18-25. [PMID: 30287190 DOI: 10.1016/j.ygcen.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/19/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
Fish can respond to stimuli from the internal or external environment with activation of the hypothalamo-pituitary-interrenal (HPI) axis and the secretion of cortisol. Stimuli that activate the HPI axis of fish include short term air exposure and increases in water temperature. The present study was conducted to determine how quickly cortisol concentrations increase in goldfish subjected to an increase in water temperature, and to compare the response to an increase in water temperature with responses to other stimuli. Plasma cortisol concentrations varied widely between individual goldfish, with concentrations ranging from 9.1 to 516.0 ng/mL in goldfish on the day of arrival from the supplier. Mean cortisol concentrations in undisturbed goldfish were low (4.5 ± 1.0 ng/mL). Mean cortisol concentrations in fish exposed to air for 3 min and in fish that experienced chasing for 10 min were markedly elevated 15 min after the beginning of the stimuli (132.6 ± 31.0 and 121.1 ± 23.9 ng/mL respectively). Mean cortisol concentrations in fish that experienced an increase in water temperature rose to 22.2 ± 7.6 ng/mL after 15 min, declined to <10 ng/mL at 30 and 60 min then increased and were elevated (79.0 ± 10.8 ng/mL) at 240 min. Cortisol measurements can be used to indicate the responsiveness of fish to changes in water temperature and goldfish will be a convenient study species for the development of studies of plasticity in responses of fish to increases in water temperature that are happening due to climate change.
Collapse
Affiliation(s)
- John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand.
| | - Mohammad A Bahry
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Department of Animal Science, Faculty of Agriculture, Balkh University, Mazar-e-Sharif, Afghanistan
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Suh N, Lee EB. Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells. BMB Rep 2018; 50:572-577. [PMID: 29065969 PMCID: PMC5720471 DOI: 10.5483/bmbrep.2017.50.11.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 11/30/2022] Open
Abstract
In most clinical applications, human mesenchymal stem cells (hMSCs) are expanded in large scale before their administration. Prolonged culture in vitro results in cellular senescence-associated phenotypes, including accumulation of reactive oxygen species (ROS) and decreased cell viabilities. Profiling of stem cell-related genes during in vitro expansion revealed that numerous canonical pathways were significantly changed. To determine the effect of selenocysteine (Sec), a rare amino acid found in several antioxidant enzymes, on the replicative senescence in hMSCs, we treated senescent hMSCs with Sec. Supplementation of Sec in the culture medium in late-passage hMSCs reduced ROS levels and improved the survival of hMSCs. In addition, a subset of key antioxidant genes and Sec-containing selenoproteins showed increased mRNA levels after Sec treatment. Furthermore, ROS metabolism and inflammation pathways were predicted to be downregulated. Taken together, our results suggest that Sec has antioxidant effects on the replicative senescence of hMSCs.
Collapse
Affiliation(s)
- Nayoung Suh
- Department of Pharmaceutical Engineering, Soon Chun Hyang University, Asan 31538, Korea
| | - Eun-Bi Lee
- Department of Pharmaceutical Engineering, Soon Chun Hyang University, Asan 31538, Korea
| |
Collapse
|
8
|
Choi CY, Choe JR, Shin YS, Kim TH, Choi JY, Kim BS. Effects of waterborne copper on oxidative stress and immune responses in red seabream, Pagrus major. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Kim TH, Choi JY, Jung MM, Oh SY, Choi CY. Effects of waterborne copper on toxicity stress and apoptosis responses in red seabream, Pagrus major. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
11
|
Berntssen MHG, Sundal TK, Olsvik PA, Amlund H, Rasinger JD, Sele V, Hamre K, Hillestad M, Buttle L, Ørnsrud R. Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:116-126. [PMID: 28946065 DOI: 10.1016/j.aquatox.2017.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/01/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Depending on its chemical form, selenium (Se) is a trace element with a narrow range between requirement and toxicity for most vertebrates. Traditional endpoints of Se toxicity include reduced growth, feed intake, and oxidative stress, while more recent finding describe disturbance in fatty acid synthesis as underlying toxic mechanism. To investigate overall metabolic mode of toxic action, with emphasis on lipid metabolism, a wide scope metabolomics pathway profiling was performed on Atlantic salmon (Salmo salar) (572±7g) that were fed organic and inorganic Se fortified diets. Atlantic salmon were fed a low natural background organic Se diet (0.35mg Se kg-1, wet weight (WW)) fortified with inorganic sodium selenite or organic selenomethionine-yeast (SeMet-yeast) at two levels (∼1-2 or 15mgkg-1, WW), in triplicate for 3 months. Apparent adverse effects were assessed by growth, feed intake, oxidative stress as production of thiobarbituric acid-reactive substances (TBARS) and levels of tocopherols, as well as an overall metabolomic pathway assessment. Fish fed 15mgkg-1 selenite, but not 15mgkg-1 SeMet-yeast, showed reduced feed intake, reduced growth, increased liver TBARS and reduced liver tocopherol. Main metabolic pathways significantly affected by 15mgkg-1 selenite, and to a lesser extent 15mgkg-1 SeMet-yeast, were lipid catabolism, endocannabinoids synthesis, and oxidant/glutathione metabolism. Disturbance in lipid metabolism was reflected by depressed levels of free fatty acids, monoacylglycerols and diacylglycerols as well as endocannabinoids. Specific for selenite was the significant reduction of metabolites in the S-Adenosylmethionine (SAM) pathway, indicating a use of methyl donors that could be allied with excess Se excretion. Dietary Se levels to respectively 1.1 and 2.1mgkg-1 selenite and SeMet-yeast did not affect any of the above mentioned parameters. Apparent toxic mechanisms at higher Se levels (15mgkg-1) included oxidative stress and altered lipid metabolism for both inorganic and organic Se, with higher toxicity for inorganic Se.
Collapse
Affiliation(s)
| | - T K Sundal
- Cargill Innovation Centre, Dirdal, Norway; University of Bergen, Bergen, Norway
| | - P A Olsvik
- NIFES, Bergen, Norway; Nord University, Bodø, Norway
| | | | | | | | - K Hamre
- NIFES, Bergen, Norway; University of Bergen, Bergen, Norway
| | | | - L Buttle
- Cargill Innovation Centre, Dirdal, Norway
| | | |
Collapse
|
12
|
Kim BS, Jung SJ, Choi YJ, Kim NN, Choi CY, Kim JW. Effects of different light wavelengths from LEDs on oxidative stress and apoptosis in olive flounder (Paralichthys olivaceus) at high water temperatures. FISH & SHELLFISH IMMUNOLOGY 2016; 55:460-468. [PMID: 27320868 DOI: 10.1016/j.fsi.2016.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
We investigated how different light spectra affect thermal stress in olive flounder (Paralichthys olivaceus), using light emitting diodes (LEDs; blue, 450 nm; green, 530 nm; red, 630 nm) at two intensities (0.3 and 0.5 W/m(2)) at relatively high water temperatures (25 and 30 °C, compared to a control condition of 20 °C). We measured the expression and activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and the levels of plasma hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, the levels and mRNA expression of caspase-3 were measured, and terminal transferase dUTP nick end labeling (TUNEL) assays of liver and comet assays were performed. The expression and activity of antioxidant enzymes, as well as plasma H2O2 and LPO levels were significantly higher after exposure to high temperatures, and significantly lower after exposure to green and blue light. Caspase-3 levels and mRNA expression showed a similar pattern. The TUNEL assay showed that apoptosis markedly increased at higher water temperatures, compared with the 20 °C control. In contrast, green light irradiation decreased apoptosis rate. Furthermore, the comet assays showed that nuclear DNA damage was caused by thermal stress, and that green light irradiation played a role in partially preventing this damage. Overall, these results suggest that light with green and blue wavelengths can reduce both high temperature-induced oxidative stress and apoptosis, and that particularly green light is efficient for this. Therefore, green light can play a role in protecting in olive flounder from thermal stress damage.
Collapse
Affiliation(s)
- Bong-Seok Kim
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju, 63068, Republic of Korea
| | - Seo Jin Jung
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Young Jae Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Na Na Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| | - Jae-Woo Kim
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju, 63068, Republic of Korea
| |
Collapse
|
13
|
Jung MM, Kim TH, Choi YJ, Kim NN, Choi JY, Oh SY, Lim SG, Choi CY. Variations in the antioxidant system and circadian rhythms of goldfish,Carassius auratus, exposed to ammonia: profile of the effects of green LED spectra. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1173355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|