1
|
Park KC, Dharmasivam M, Richardson DR. The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators that Inhibit their Activity. Int J Mol Sci 2020; 21:E6805. [PMID: 32948029 PMCID: PMC7555822 DOI: 10.3390/ijms21186805] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The crucial role of extracellular proteases in cancer progression is well-known, especially in relation to the promotion of cell invasion through extracellular matrix remodeling. This also occurs by the ability of extracellular proteases to induce the shedding of transmembrane proteins at the plasma membrane surface or within extracellular vesicles. This process results in the regulation of key signaling pathways by the modulation of kinases, e.g., the epidermal growth factor receptor (EGFR). Considering their regulatory roles in cancer, therapeutics targeting various extracellular proteases have been discovered. These include the metal-binding agents di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which increase c-MET degradation by multiple mechanisms. Both the direct and indirect inhibition of protease expression and activity can be achieved through metal ion depletion. Considering direct mechanisms, chelators can bind zinc(II) that plays a catalytic role in enzyme activity. In terms of indirect mechanisms, Dp44mT and DpC potently suppress the expression of the kallikrein-related peptidase-a prostate-specific antigen-in prostate cancer cells. The mechanism of this activity involves promotion of the degradation of the androgen receptor. Additional suppressive mechanisms of Dp44mT and DpC on matrix metalloproteases (MMPs) relate to their ability to up-regulate the metastasis suppressors N-myc downstream regulated gene-1 (NDRG1) and NDRG2, which down-regulate MMPs that are crucial for cancer cell invasion.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
3
|
Yu C, Hao X, Zhang S, Hu W, Li J, Sun J, Zheng M. Characterization of the prognostic values of the NDRG family in gastric cancer. Therap Adv Gastroenterol 2019; 12:1756284819858507. [PMID: 31384305 PMCID: PMC6647212 DOI: 10.1177/1756284819858507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The N-myc downstream-regulated gene (NDRG) family, NDRG1-4, has been involved in a wide spectrum of biological functions in multiple cancers. However, their prognostic values remain sparse in gastric cancer (GC). Therefore, it is crucial to systematically investigate the prognostic values of the NDRG family in GC. METHODS The prognostic values of the NDRG family were evaluated by Kaplan-Meier Plotter and SurvExpress. The mRNA of the NDRG family was investigated in The Cancer Genome Atlas (TCGA). Transcription factors (TFs) and miRNAs associated with the NDRG family were predicted by NetworkAnalysis. The prognostic values of DNA methylation levels were analyzed by MethSurv. The correlation between immune cells and the NDRG family was evaluated by the Tumor Immune Estimation Resource (TIMER) database. RESULTS High levels of mRNA expression of NDRG2 and NDRG3 were associated with a favorable prognosis in all GCs. In HER2 - GC, NDRG1 was significantly associated with a poor prognosis of GC [hazard ratio (HR) = 1.65, 95% confidence interval (CI) = 1.16-2.33, p = 0.0046]. In HER2 + GC, NDRG4 showed a poor prognosis (HR = 1.4, 95% CI: 1.06-1.85, p = 0.017). NDRG4 was an independent prognostic factor in recurrence-free survival by TCGA cohort. The low-risk NDRG-signature group displayed a significantly favorable survival outcome than the high-risk group (HR = 1.76, 95% CI: 1.2-2.59, p = 0.00385). The phosphorylated protein NDRG1 (NDRG1_pT346) displayed a favorable overall survival and was significantly associated with HER2 and phosphorylated HER2. Epidermis development was the top biological process (BP) for coexpressed genes associated with NDRG1 and NDRG4, while mitotic nuclear division and mitotic cell processes were the top BPs for NDRG2 and NDRG3, respectively. Overall, 6 CpGs of NDRG1, 4 CpGs of NDRG2, 3 CpGs of NDRG3 and 24 CpGs of NDRG4 were associated with significant prognosis. CD4+ T-cells showed the highest correlation with NDRG4 (correlation = 0.341, p = 2.14e-11). Furthermore, BCL6 in follicular helper T-cells (Tfh) cells showed the highest association with NDRG4 (correlation = 0.438, p = 00e+00). CONCLUSIONS This study analyzed the multilevel prognostic values and biological roles of the NDRG family in GC.
Collapse
Affiliation(s)
- Chaoran Yu
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Xiaohui Hao
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Sen Zhang
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Wenjun Hu
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Jianwen Li
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Jing Sun
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | | |
Collapse
|
4
|
Extract from Moringa oleifera seeds suppresses the epithelial-mesenchymal transition-mediated metastasis of gastric cancer by targeting the metastatic suppressor NDRG1. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
5
|
Fu Y, Wei J, Dai X, Ye Y. Increased NDRG1 expression attenuate trophoblast invasion through ERK/MMP-9 pathway in preeclampsia. Placenta 2017; 51:76-81. [PMID: 28292472 DOI: 10.1016/j.placenta.2017.01.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the expression of N-myc downstream-regulated gene1(NDRG1)in the placentas of pregnancies complicated with early-onset and late-onset preeclampsia (PE) and its underlying mechanism on the pathophysiology of PE. METHODS The expressions of NDRG-1 in placentas of pregnancies complicated with early-onset PE and late-onset PE were detected using immunohistochemistry, western blot assays and fluorescence quantitative PCR. The expressions of MMP-2, MMP-9 and ERK1/2 protein were detected by western blot analysis and cell invasion assay was performed using transwell chambers in NDRG1 silenced JEG-3 cells. RESULTS Compared with the normal term pregnancies, the expression of both NDRG1 mRNA and protein were significantly high in placentas from PE, and the expression of NDRG1 in early-onset PE was higher than that in late-onset PE. In NDRG1-silenced JEG-3 cells, MMP-2, MMP-9 and phosphorylation of ERK1/2 protein increased obviously and the number of cells that penetrated the membrane increased. CONCLUSION Upregulation of NDRG1 is associated with impaired trophoblast invasion in PE by inhibition ERK/MMP-2 and MMP-9 Pathway.
Collapse
Affiliation(s)
- Yufen Fu
- Department of Obstetrics and Gynecology, Qingdao University, Qingdao 266000, China; Department of Obstetrics, Zibo Maternity and Child Health Hospital, Zibo 255000, China
| | - Jufeng Wei
- Department of Obstetrics and Gynecology, Qingdao University, Qingdao 266000, China; Department of Obstetrics, Qingdao Central Hospital, Qingdao 266000, China
| | - Xueli Dai
- Department of Obstetrics, Zibo Maternity and Child Health Hospital, Zibo 255000, China
| | - Yuanhua Ye
- Department of Obstetrics and Gynecology, Qingdao University, Qingdao 266000, China; Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
6
|
Chang X, Xu X, Xue X, Ma J, Li Z, Deng P, Chen J, Zhang S, Zhi Y, Dai D. NDRG1 Controls Gastric Cancer Migration and Invasion through Regulating MMP-9. Pathol Oncol Res 2016; 22:789-96. [PMID: 27154576 DOI: 10.1007/s12253-016-0071-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 04/27/2016] [Indexed: 01/16/2023]
Abstract
The purpose of this study is to detect the clinical significance of NDRG1 and its relationship with MMP-9 in gastric cancer metastatic progression. 101 cases of gastric cancer specimens were utilized to identify the protein expression of NDRG1 and MMP-9 by immunohistochemistry, their clinical significance was also analyzed. The suppression by siRNA-NDRG1 was employed to detect the role of NDRG1 in gastric cancer progression and its relationship with MMP-9. NDRG1 expression was correlated inversely with the degree of tumor cell differentiation (p < 0.01), invasion depth (p < 0.05), lymph node metastasis (p < 0.05) and TNM stage (p < 0.05), whereas MMP-9 was positive correlated with the degree of tumor cell differentiation (p < 0.01), lymph node metastasis (p < 0.05) and TNM stage (p < 0.05), but not correlated with invasion depth (p>0.05). Furthermore, cell proliferation and invasion effect were remarkably enhanced when NDRG1 was silencing, but MMP-9 expression was increased. NDRG1 silencing enhances gastric cancer cells progression through upregulating MMP-9. It suggests that NDRG1 may inhibit the metastasis of gastric cancer via regulating MMP-9.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
- Department of Radiotherapy, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyang Xu
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinguo Ma
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhenhua Li
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Peng Deng
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Shuanglong Zhang
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Yu Zhi
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Dongqiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
- Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
- Department of Gastrointestinal Surgery and Cancer Center, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
7
|
N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Cancer Lett 2014; 355:242-52. [PMID: 25218595 DOI: 10.1016/j.canlet.2014.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common phenotype of oral cancer. N-myc downstream regulated gene 1 (NDRG1) is a modulator for cell proliferation, differentiation, and invasion. The role and function of NDRG1 in OSCC cells remain inconclusive. The (3)H-thymidine incorporation and in vitro matrigel invasion assays revealed NDRG1-knockdown significantly enhanced OSCC cell proliferation and invasion. Overexpressed NDRG1 arrested the cell cycle at the S-phase, thus attenuated cell proliferation in OECM-1 cells. The NDRG1-knockdown enhanced tumorigenesis of OECM-1 cells in the xenograft animal model. Western-blot and zymographic assays revealed that NDRG1 downregulated the gelatinase activities and protein levels of metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9). NDRG1 modulated epithelial-mesenchymal transition (EMT) through upregulation of the E-cadherin expression, but downregulation of the N-cadherin, Vimentin, Snail-1, and Slug. Immunofluorescence staining indicated knockdown of NDRG1 enhanced F-actin expression and polymerization. Our results indicated NDRG1 attenuated OSCC cell growth in vitro and in vivo. The downregulation of EMT, MMP-2, and MMP-9 may explain the role of anti-invasion of NDRG1 in human OSCC cells. The experiments recognize that NDRG1 is an antitumor gene in OSCC cells.
Collapse
|
8
|
NDRG1 expression is related to the progression and prognosis of gastric cancer patients through modulating proliferation, invasion and cell cycle of gastric cancer cells. Mol Biol Rep 2014; 41:6215-23. [PMID: 24985974 DOI: 10.1007/s11033-014-3501-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
Abstract
N-myc downstream-regulated gene 1 (NDRG1) has been proposed as a tumor suppressor gene in many different types of tumors, but its potential function and corresponding mechanism are not yet fully elucidated. This study aims to detect the possible function of NDRG1 in gastric cancer progression. In this study, 112 paired gastric cancer tissues and corresponding nonmalignant gastric tissues were utilized to identify the differential protein expression of NDRG1 by immunohistochemistry and its clinical significance was analyzed. Furthermore, 49 of 112 paired gastric specimens were used to detect the differential mRNA expression by real-time PCR. The over expression of NDRG1 in human gastric cancer cell line AGS by PcDNA3.1-NDRG1 transfection was utilized to detect the role of NDRG1 in regulating the biological behavior of gastric cancer. NDRG1 expression was significantly decreased in primary gastric cancer tissues, compared with its corresponding nonmalignant gastric tissues (p < 0.05), and its decreased expression was significantly associated with lymph node metastasis (p < 0.01), invasion depth (p < 0.01) and differentiation (p < 0.05). Additionally, the overall survival rate of gastric cancer patients with high expression of NDRG1 was higher than those with low expression during the follow-up period. NDRG1 overexpression suppressed cells proliferation, invasion and induced a G1 cell cycle arrest in gastric cancer. Furthermore, the down-regulation of NDRG1 in gastric cancer metastatic progression was correlated to E-cadherin and MMP-9. Our results verify that NDRG1 acts as a tumor suppressor gene and may play an important role in the metastasis progression and prognosis of gastric cancer.
Collapse
|
9
|
Wang B, Li J, Ye Z, Li Z, Wu X. N-myc downstream regulated gene 1 acts as a tumor suppressor in ovarian cancer. Oncol Rep 2014; 31:2279-85. [PMID: 24626771 DOI: 10.3892/or.2014.3072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/14/2014] [Indexed: 12/12/2022] Open
Abstract
Although implicated in a number of tumor types, the role of N-myc downstream regulated gene 1 (NDRG1) in ovarian cancer (OC) is unclear. In the present study, we used short hairpin RNA (shRNA) to silence NDRG1 in the OC cell line OVCAR3 and assessed the effect of its knockdown on cell morphology, proliferation, colony formation, migration and invasion. To complement these knockdown studies, we overexpressed NDRG1 in the same cell line. We found that NDRG1 knockdown significantly enhanced OVCAR3 proliferation, migration and invasion; however, there were no apparent changes in cell morphology. We also examined the effect in vivo and found that NDRG1 depletion promoted OVCAR3 xenograft growth in nude mice. In accordance with these data, we found that NDRG1 overexpression decreased proliferation, adhesion and apoptosis, and induced G0/G1 cell cycle arrest in OVCAR3 cells; expression of p21 and p53 was also increased. In conclusion, we demonstrated that NDRG1 acts as a tumor suppressor in ovarian carcinogenesis and may be a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Bei Wang
- Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jianli Li
- Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhanying Ye
- Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhe Li
- Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaohua Wu
- Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
10
|
Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJR, Sahni S, Richardson DR. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1845:1-19. [PMID: 24269900 DOI: 10.1016/j.bbcan.2013.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.
Collapse
Affiliation(s)
- Bernard A Fang
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Žaklina Kovačević
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Bae DH, Jansson PJ, Huang ML, Kovacevic Z, Kalinowski D, Lee CS, Sahni S, Richardson DR. The role of NDRG1 in the pathology and potential treatment of human cancers. J Clin Pathol 2013; 66:911-7. [PMID: 23750037 DOI: 10.1136/jclinpath-2013-201692] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-myc downstream regulated gene 1 (NDRG1) has been well characterised to act as a metastatic suppressor in a number of human cancers. It has also been implicated to have a significant function in a number of physiological processes such as cellular differentiation and cell cycle. In this review, we discuss the role of NDRG1 in cancer pathology. NDRG1 was observed to be downregulated in the majority of cancers. Moreover, the expression of NDRG1 was found to be significantly lower in neoplastic tissues as compared with normal tissues. The most important function of NDRG1 in inhibiting tumour progression is associated with its ability to suppress metastasis. However, it has also been shown to have important effects on other stages of cancer progression (primary tumour growth and angiogenesis). Recently, novel iron chelators with selective antitumour activity (ie, Dp44mT, DpC) were shown to upregulate NDRG1 in cancer cells. Moreover, Dp44mT showed its antimetastatic potential only in cells expressing NDRG1, making this protein an important therapeutic target for cancer chemotherapy. This observation has led to increased interest in the examination of these novel anticancer agents.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, , Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lane DJR, Saletta F, Suryo Rahmanto Y, Kovacevic Z, Richardson DR. N-myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion. PLoS One 2013; 8:e57273. [PMID: 23437357 PMCID: PMC3578820 DOI: 10.1371/journal.pone.0057273] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/18/2013] [Indexed: 01/23/2023] Open
Abstract
Iron is critical for cellular proliferation and its depletion leads to a suppression of both DNA synthesis and global translation. These observations suggest that iron depletion may trigger a cellular “stress response”. A canonical response of cells to stress is the formation of stress granules, which are dynamic cytoplasmic aggregates containing stalled pre-initiation complexes that function as mRNA triage centers. By differentially prioritizing mRNA translation, stress granules allow for the continued and selective translation of stress response proteins. Although the multi-subunit eukaryotic initiation factor 3 (eIF3) is required for translation initiation, its largest subunit, eIF3a, may not be essential for this activity. Instead, eIF3a is a vital constituent of stress granules and appears to act, in part, by differentially regulating specific mRNAs during iron depletion. Considering this, we investigated eIF3a’s role in modulating iron-regulated genes/proteins that are critically involved in proliferation and metastasis. In this study, eIF3a was down-regulated and recruited into stress granules by iron depletion as well as by the classical stress-inducers, hypoxia and tunicamycin. Iron depletion also increased expression of the metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), and a known downstream repressed target of eIF3a, namely the cyclin-dependent kinase inhibitor, p27kip1. To determine if eIF3a regulates NDRG1 expression, eIF3a was inducibly over-expressed or ablated. Importantly, eIF3a positively regulated NDRG1 expression and negatively regulated p27kip1 expression during iron depletion. This activity of eIF3a could be due to its recruitment to stress granules and/or its ability to differentially regulate mRNA translation during cellular stress. Additionally, eIF3a positively regulated proliferation, but negatively regulated cell motility and invasion, which may be due to the eIF3a-dependent changes in expression of NDRG1 and p27kip1 observed under these conditions.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
13
|
Dong Z, Xu X, Du L, Yang Y, Cheng H, Zhang X, Li Z, Wang L, Li J, Liu H, Qu X, Wang C. Leptin-mediated regulation of MT1-MMP localization is KIF1B dependent and enhances gastric cancer cell invasion. Carcinogenesis 2013; 34:974-83. [PMID: 23354307 DOI: 10.1093/carcin/bgt028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leptin overexpression is closely correlated with gastric cancer (GC) invasion, but its exact effect and the underlying mechanism in tumorigenesis remain poorly understood. Membrane type 1-matrix metalloproteinase (MT1-MMP), a surface-anchored 'master switch' proteinase, is overexpressed and plays crucial roles in tumor invasion. Here, we characterized the influence of leptin on the generation and surface localization of MT1-MMP in GC and elucidated its molecular mechanisms. Our results revealed that leptin promoted GC cell invasion in vitro by upregulating MT1-MMP expression. Furthermore, cell surface biotinylation assay and flow cytometry demonstrated that the surface expression of MT1-MMP was also enhanced by leptin, and knockdown of kinesin family member 1B (KIF1B, a microtubule plus end-directed monomeric motor protein) by small interference RNA inhibited this process. Notably, coimmunoprecipitation analysis indicated that leptin enhanced the interaction of MT1-MMP with KIF1B in a time-dependent manner, which consequently contributed to GC cell invasion. Moreover, leptin increased MT1-MMP or KIF1B expression by the protein kinase B (AKT) pathway and extracellular signal-regulated kinase 1/2 partially participated in this process. However, only AKT was implicated in the leptin-mediated membrane localization of MT1-MMP. Immunohistochemistry analysis revealed that leptin, MT1-MMP and KIF1B are overexpressed in GC tissues, and they positively correlated with clinical stage and lymph node metastasis. These observations indicate that this regulatory network exists in vivo. Taken together, our findings suggest that leptin is an effective intracellular stimulator of MT1-MMP and that leptin-enhanced cell surface localization of MT1-MMP is dependent on KIF1B, which consequently plays a critical role in GC invasion.
Collapse
Affiliation(s)
- Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim BH, Park EY, Yoo KH, Choi KM, Kim Y, Seong JK, Park JH. N-myc downstream-regulated gene 1 is involved in the regulation of cystogenesis in transgenic mice overexpressing human PKD2 gene. Proteomics 2013; 13:134-41. [DOI: 10.1002/pmic.201200248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 12/27/2022]
Affiliation(s)
- Bo Hye Kim
- Department of Biological Science; Sookmyung Women's University; Seoul; Republic of Korea
| | - Eun Young Park
- Department of Biological Science; Sookmyung Women's University; Seoul; Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science; Sookmyung Women's University; Seoul; Republic of Korea
| | - Kyung Mi Choi
- Laboratory of Developmental Biology and Genomics; College of Veterinary Medicine; Seoul National University; Seoul; Republic of Korea
| | - Yona Kim
- Laboratory of Developmental Biology and Genomics; College of Veterinary Medicine; Seoul National University; Seoul; Republic of Korea
| | - Je kyung Seong
- Laboratory of Developmental Biology and Genomics; College of Veterinary Medicine; Seoul National University; Seoul; Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science; Sookmyung Women's University; Seoul; Republic of Korea
| |
Collapse
|
15
|
Chang X, Zhang S, Ma J, Li Z, Zhi Y, Chen J, Lu Y, Dai D. Association of NDRG1 Gene Promoter Methylation with Reduced NDRG1 Expression in Gastric Cancer Cells and Tissue Specimens. Cell Biochem Biophys 2012; 66:93-101. [DOI: 10.1007/s12013-012-9457-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Said HM, Polat B, Stein S, Guckenberger M, Hagemann C, Staab A, Katzer A, Anacker J, Flentje M, Vordermark D. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells. World J Clin Oncol 2012; 3:104-10. [PMID: 22787578 PMCID: PMC3394081 DOI: 10.5306/wjco.v3.i7.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/10/2011] [Accepted: 06/30/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation.
METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant).
RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results.
CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.
Collapse
Affiliation(s)
- Harun M Said
- Department of Radiation Oncology, University of Wuerzburg, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ding W, Zhang J, Yoon JG, Shi D, Foltz G, Lin B. NDRG4 is downregulated in glioblastoma and inhibits cell proliferation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:263-7. [PMID: 22489821 DOI: 10.1089/omi.2011.0146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NDRG4 is a member of the N-myc downregulated gene family (NDRG) belonging to the alpha/beta hydrolase superfamily. We have previously documented discrepancy between our analysis of the expression and function of NDRG4 in glioblastoma multiforme (GBM) and a recent publication by Schilling et al., who reported that NDRG4 is upregulated in GBM compared to human cortex tissues and knock down of NDRG4 reduced the viability of GBM cells. In the present study, we found that NDRG4 is indeed downregulated, at both RNA and protein levels, by quantitative RT-PCR and Western blot analysis, in GBM compared to normal tissues, and that over expression of NDRG4 inhibited proliferation of GBM cells. These new observations can inform the selection of lead molecular compounds for drug discovery as well as novel diagnostics for GBM. They also lend evidence to NDRG4 a role of tumor suppressor.
Collapse
Affiliation(s)
- Wenchao Ding
- Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Zhang SB, Song SP, Li B, Zhou YS, Zhang YD. Expression of N-myc downstream-regulated gene 1 in primary gallbladder carcinoma and its correlation with clinicopathological features and clinical outcome. Med Oncol 2011; 29:1866-72. [PMID: 21735144 DOI: 10.1007/s12032-011-0017-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/22/2022]
Abstract
N-myc downstream-regulated gene 1 (NDRG1), a member of the N-myc downstream-regulated gene family, is induced under a wide variety of stress and cell growth-regulatory conditions. In several cancers, recent studies have shown its association with inhibition of tumor metastasis and suggested it to be a tumor suppressor gene. However, its significance in primary gallbladder carcinoma (PGC) has not been studied. Therefore, the aim of this study was to investigate NDRG1 expression in PGC and its prognostic significance. We examined NDRG1 expression in tumor specimens from 138 patients with PGC by immunohistochemistry and analyzed the correlation between NDRG1 expression and clinicopathologic factors or survival. NDRG1 was expressed in 63.8% of PGC but not in the normal epithelium of the gallbladder, remarkably at the invasive front of the tumors. In addition, NDRG1 expression was significantly associated with high histologic grade, advanced pathologic T stage and clinical stage, positive nodal metastasis and venous/lymphatic invasion. Moreover, Kaplan-Meier curves showed that NDRG1 over-expression was significantly related to poor overall and disease-free survival (both P = 0.02). Furthermore, multivariate analyses showed that NDRG1 expression (hazard ratio, 3.338; P = 0.02) and clinical stage (hazard ratio, 3.128; P = 0.03) were independent risk factors for disease-free survival. Our data demonstrate for the first time that NDRG1 expression in PGC was significantly correlated with unfavorable clinicopathologic features and an independent poor prognostic factor for disease-free survival in patients. Taken together, our findings suggest that NDRG1 expression could be used as a novel prognostic factor for patient survival and might be a potential therapeutic target in PGC.
Collapse
Affiliation(s)
- Sheng-bin Zhang
- National Hepatobiliary and Enteric Surgery Research Center of Ministry of Health, Central South University, Xiangya Road 87, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
19
|
Design, Synthesis, and Preliminary Activity Evaluation of Novel Peptidomimetics as Aminopeptidase N/CD13 Inhibitors. Arch Pharm (Weinheim) 2011; 344:494-504. [DOI: 10.1002/ardp.201100109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 11/07/2022]
|
20
|
Zhao G, Chen J, Deng Y, Gao F, Zhu J, Feng Z, Lv X, Zhao Z. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells. Biochem Biophys Res Commun 2011; 408:154-9. [DOI: 10.1016/j.bbrc.2011.03.140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 12/22/2022]
|