1
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Jia C, Wu Y, Gao F, Liu W, Li N, Chen Y, Sun L, Wang S, Yu C, Bao Y, Song Z. The opposite role of lactate dehydrogenase a (LDHA) in cervical cancer under energy stress conditions. Free Radic Biol Med 2024; 214:2-18. [PMID: 38307156 DOI: 10.1016/j.freeradbiomed.2024.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Due to insufficient and defective vascularization, the tumor microenvironment is often nutrient-depleted. LDHA has been demonstrated to play a tumor-promoting role by facilitating the glycolytic process. However, whether and how LDHA regulates cell survival in the nutrient-deficient tumor microenvironment is still unclear. Here, we sought to investigate the role and mechanism of LDHA in regulating cell survival and proliferation under energy stress conditions. Our results showed that the aerobic glycolysis levels, cell survival and proliferation of cervical cancer cells decreased significantly after inhibition of LDHA under normal culture condition while LDHA deficiency greatly inhibited glucose starvation-induced ferroptosis and promoted cell proliferation and tumor formation under energy stress conditions. Mechanistic studies suggested that glucose metabolism shifted from aerobic glycolysis to mitochondrial OXPHOS under energy stress conditions and LDHA knockdown increased accumulation of pyruvate in the cytosol, which entered the mitochondria and upregulated the level of oxaloacetate by phosphoenolpyruvate carboxylase (PC). Importantly, the increase in oxaloacetate production after absence of LDHA remarkably activated AMP-activated protein kinase (AMPK), which increased mitochondrial biogenesis and mitophagy, promoted mitochondrial homeostasis, thereby decreasing ROS level. Moreover, repression of lipogenesis by activation of AMPK led to elevated levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which effectively resisted ROS-induced cell ferroptosis and enhanced cell survival under energy stress conditions. These results suggested that LDHA played an opposing role in survival and proliferation of cervical cancer cells under energy stress conditions, and inhibition of LDHA may not be a suitable treatment strategy for cervical cancer.
Collapse
Affiliation(s)
- Chaoran Jia
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China; National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Yulun Wu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China
| | - Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Wei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Na Li
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China
| | - Yao Chen
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China; National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China.
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Wu Y, Wang Y, He C, Wang Y, Ma J, Lin Y, Zhou L, Xu S, Ye Y, Yin W, Ye J, Lu J. Precise diagnosis of breast phyllodes tumors using Raman spectroscopy: Biochemical fingerprint, tumor metabolism and possible mechanism. Anal Chim Acta 2023; 1283:341897. [PMID: 37977771 DOI: 10.1016/j.aca.2023.341897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Breast fibroadenomas and phyllodes tumors are both fibroepithelial tumors with comparable histological characteristics. However, rapid and precise differential diagnosis is a tough point in clinical pathology. Given the tendency of phyllodes tumors to recur, the difficulty in differential diagnosis with fibroadenomas leads to the difficulty in optimal management for these patients. METHOD In this study, we used Raman spectroscopy to differentiate phyllodes tumors from breast fibroadenomas based on the biochemical and metabolic composition and develop a classification model. The model was validated by 5-fold cross-validation in the training set and tested in an independent test set. The potential metabolic differences between the two types of tumors observed in Raman spectroscopy were confirmed by targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 204 patients with formalin-fixed paraffin-embedded (FFPE) tissue samples, including 100 fibroadenomas and 104 phyllodes tumors were recruited from April 2014 to August 2021. All patients were randomly divided into the training cohort (n = 153) and the test cohort (n = 51). The Raman classification model could differentiate phyllodes tumor versus fibroadenoma with cross-validation accuracy, sensitivity, precision, and area under curve (AUC) of 85.58 % ± 1.77 %, 83.82 % ± 1.01 %, 87.65 % ± 4.22 %, and 93.18 % ± 1.98 %, respectively. When tested in the independent test set, it performed well with the test accuracy, sensitivity, specificity, and AUC of 83.50 %, 86.54 %, 80.39 %, and 90.71 %. Furthermore, the AUC was significantly higher for the Raman model than that for ultrasound (P = 0.0017) and frozen section diagnosis (P < 0.0001). When it came to much more difficult diagnosis between fibroadenoma and benign or small-size phyllodes tumor for pathological examination, the Raman model was capable of differentiating with AUC up to 97.45 % and 95.61 %, respectively. On the other hand, targeted metabolomic analysis, based on fresh-frozen tissue samples, confirmed the differential metabolites (including thymine, dihydrothymine, trans-4-hydroxy-l-proline, etc.) identified from Raman spectra between phyllodes tumor and fibroadenoma. SIGNIFICANCE AND NOVELTY In this study, we obtained the molecular information map of breast phyllodes tumors provided by Raman spectroscopy for the first time. We identified a novel Raman fingerprint signature with the potential to precisely characterize and distinguish phyllodes tumors from fibroadenoma as a quick and accurate diagnostic tool. Raman spectroscopy is expected to further guide the precise diagnosis and optimal treatment of breast fibroepithelial tumors in the future.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Chang He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jiayi Ma
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yumei Ye
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Jingsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
4
|
Buczkowska J, Szeliga M. Two Faces of Glutaminase GLS2 in Carcinogenesis. Cancers (Basel) 2023; 15:5566. [PMID: 38067269 PMCID: PMC10705333 DOI: 10.3390/cancers15235566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 04/29/2025] Open
Abstract
In rapidly proliferating cancer cells, glutamine is a major source of energy and building blocks. Increased glutamine uptake and enhanced glutaminolysis are key metabolic features of many cancers. Glutamine is metabolized by glutaminase (GA), which is encoded by two genes: GLS and GLS2. In contrast to isoforms arising from the GLS gene, which clearly act as oncoproteins, the role of GLS2 products in tumorigenesis is far from well understood. While in some cancer types GLS2 is overexpressed and drives cancer development, in some other types it is downregulated and behaves as a tumor suppressor gene. In this review, we describe the essential functions and regulatory mechanisms of human GLS2 and the cellular compartments in which GLS2 has been localized. Furthermore, we present the context-dependent oncogenic and tumor-suppressor properties of GLS2, and delve into the mechanisms underlying these phenomena.
Collapse
Affiliation(s)
| | - Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
Quek LE, van Geldermalsen M, Guan YF, Wahi K, Mayoh C, Balaban S, Pang A, Wang Q, Cowley MJ, Brown KK, Turner N, Hoy AJ, Holst J. Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene 2022; 41:4066-4078. [PMID: 35851845 PMCID: PMC9391225 DOI: 10.1038/s41388-022-02408-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
Glutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine. The coupling of glucose and glutamine catabolism appears hard-wired via a distinct TNBC gene expression profile biased to strip and then sequester glutamine nitrogen, but hampers the ability of TNBC cells to oxidise glucose when glutamine is limiting. Our results provide a new understanding of how metabolically rigid TNBC cells are sensitive to glutamine deprivation and a way to select vulnerable TNBC subtypes that may be responsive to metabolic-targeted therapies.
Collapse
Affiliation(s)
- Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia.
| | - Michelle van Geldermalsen
- Origins of Cancer Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Yi Fang Guan
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Kanu Wahi
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Seher Balaban
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Angel Pang
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Qian Wang
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Kristin K Brown
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jeff Holst
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
6
|
Ibrahiem AT, Fawzy MS, Abdulhakim JA, Toraih EA. GLUT1 and ASCT2 Protein Expression in Papillary Thyroid Carcinoma Patients and Relation to Hepatitis C Virus: A Propensity-Score Matched Analysis. Int J Gen Med 2022; 15:2929-2944. [PMID: 35308569 PMCID: PMC8932928 DOI: 10.2147/ijgm.s354108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Recently, glucose and amino acid transporters have gradually become a hot topic in thyroid gland biology and cancer research. We aimed to investigate the expressions of glucose transporter 1 (GLUT1) and glutamine transporter 2 (ASCT2) in papillary thyroid carcinoma (PTC) and their clinical significance and relation to HCV-related hepatitis. PATIENTS AND METHODS Screening 202 TC tissue samples against the selection criteria using a propensity-score matched analysis to adjust for age, sex, side of tumor, histopathological variants, TNM staging system, and the positivity for HCV yielded 51 matched (17 HCV positive and 34 HCV negative) PTC samples. The expressions of GLUT1 and ASCT2 expressions were detected by immunohistochemical staining. Kaplan-Meier survival curves were generated for disease-free and overall survival, and multivariate Cox regression analysis was applied to identify predictors for mortality. RESULTS Of 51 thyroid cancer tissues, 85% showed positive GLUT1 cytoplasmic staining, and 26% had a high expression score. All thyroid cancer specimens demonstrated ASCT2 cytoplasmic staining with membranous accentuation. Of these, 78% showed a high expression score, and 22% showed weak staining. On stratifying the study cohort based on the HCV status, HCV negative cohort showed a significantly higher immunoreactivity score for GLUT1 (p = 0.004) but not ASCT2 (p = 0.94) than HCV positive group. The expressions of the studied transporters showed no significant associations with the prognostic features of PTC nor the disease-free/overall survival. CONCLUSION GLUT1 and ASCT2 immunohistochemical staining showed positive expression with variable intensity in nearly 85% and 100% of PTC tissue samples compared to normal ones, respectively. Furthermore, GLUT1 protein expression, not ASCT2, showed a higher immunoreactivity score in PTC patients who are negative for HCV than cancer patients with positive HCV. Meanwhile, the expression of both protein markers was not associated with the clinicopathological characteristics of the studied PTC patients. Further large-scale multicenter studies are recommended to validate the present findings.
Collapse
Affiliation(s)
- Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Jawaher A Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Interaction of the neutral amino acid transporter ASCT2 with basic amino acids. Biochem J 2020; 477:1443-1457. [PMID: 32242892 DOI: 10.1042/bcj20190859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Glutamine transport across cell membranes is performed by a variety of transporters, including the alanine serine cysteine transporter 2 (ASCT2). The substrate-binding site of ASCT2 was proposed to be specific for small amino acids with neutral side chains, excluding basic substrates such as lysine. A series of competitive inhibitors of ASCT2 with low µM affinity were developed previously, on the basis of the 2,4-diaminobutyric acid (DAB) scaffold with a potential positive charge in the side chain. Therefore, we tested whether basic amino acids with side chains shorter than lysine can interact with the ASCT2 binding site. Molecular docking of L-1,3-diaminopropionic acid (L-DAP) and L-DAB suggested that these compounds bind to ASCT2. Consistent with this prediction, L-DAP and L-DAB, but not ornithine, lysine or D-DAP, elicited currents when applied to ASCT2-expressing cells. The currents were carried by anions and showed the hallmark properties of ASCT2 currents induced by transported substrates. The L-DAP response could be eliminated by a competitive ASCT2 inhibitor, suggesting that binding occurs at the substrate binding site. The KM for L-DAP was weakly voltage dependent. Furthermore, the pH dependence of the L-DAP response showed that the compound can bind in several protonation states. Together, these results suggest that the ASCT2 binding site is able to recognize L-amino acids with short, basic side chains, such as the L-DAP derivative β-N-methylamino-l-Alanine (BMAA), a well-studied neurotoxin. Our results expand the substrate specificity of ASCT2 to include amino acid substrates with positively charged side chains.
Collapse
|
8
|
Wang H, Ma Z, Cheng X, Tuo B, Liu X, Li T. Physiological and Pathophysiological Roles of Ion Transporter-Mediated Metabolism in the Thyroid Gland and in Thyroid Cancer. Onco Targets Ther 2020; 13:12427-12441. [PMID: 33299328 PMCID: PMC7721308 DOI: 10.2147/ott.s280797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine tumor and has shown an increasing annual incidence, especially among women. Patients with thyroid cancer have a good prognosis, with a high five-year survival rate; however, the recurrence rate and disease status of thyroid cancer remain a burden for patients, which compels us to further elucidate the pathogenesis of this disease. Recently, ion transporters have gradually become a hot topic in the field of thyroid gland biology and cancer research. Additionally, alterations in the metabolic state of tumor cells and protein molecules have gradually become the focus of scientific research. This review focuses on the progress in understanding the physiological and pathophysiological roles of ion transporter-mediated metabolism in both the thyroid gland and thyroid cancer. We also hope to shed light on new targets for the treatment and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Digestive Disease Institute of Guizhou Province, Zunyi, People’s Republic of China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Digestive Disease Institute of Guizhou Province, Zunyi, People’s Republic of China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| |
Collapse
|
9
|
Baguet T, Bouton J, Janssens J, Pauwelyn G, Verhoeven J, Descamps B, Van Calenbergh S, Vanhove C, De Vos F. Radiosynthesis, in vitro and preliminary biological evaluation of [ 18 F]2-amino-4-((2-((3-fluorobenzyl)oxy)benzyl)(2-((3-(fluoromethyl)benzyl)oxy)benzyl)amino)butanoic acid, a novel alanine serine cysteine transporter 2 inhibitor-based positron emission tomography tracer. J Labelled Comp Radiopharm 2020; 63:442-455. [PMID: 32472945 DOI: 10.1002/jlcr.3863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/29/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023]
Abstract
The metabolic alterations in tumors make it possible to visualize the latter by means of positron emission tomography, enabling diagnosis and providing metabolic information. The alanine serine cysteine transporter-2 (ASCT-2) is the main transporter of glutamine and is upregulated in several tumors. Therefore, a good positron emission tracer targeting this transport protein would have substantial value. Hence, the aim of this study is to develop a fluorine-18-labeled version of a V-9302 analogue, one of the most potent inhibitors of ASCT-2. The precursor was labeled with fluorine-18 via a nucleophilic substitution of the corresponding benzylic bromide. The cold reference product was subjected to in vitro assays with [3 H]glutamine in a PC-3 and F98 cell line to determine the affinity for both the human and rat ASCT-2. To evaluate the tracer potential dynamic μPET, images were acquired in a mouse xenograft model for prostate cancer. The tracer could be synthesized with an overall nondecay corrected yield of 3.66 ± 1.90%. in vitro experiments show inhibitor constants Ki of 90 and 125 μM for the PC-3 and F98 cells, respectively. The experiments in the PC-3 xenograft demonstrate a low uptake in the tumor tissue. We have successfully synthesized the radiotracer [18 F]2-amino-4-((2-((3-fluorobenzyl)oxy)benzyl)(2-((3-(fluoromethyl)benzyl)oxy)benzyl)amino)butanoic acid. in vitro experiments show a good affinity for both the human and rat ASCT-2. However, the tracer suffers from poor in vivo tumor uptake in the PC-3 model. Briefly, we present the first fluorine-18-labeled derivative of compound V-9302, a promising novel ASCT-2 blocker used for inhibition of tumor growth.
Collapse
Affiliation(s)
- Tristan Baguet
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Jakob Bouton
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Jonas Janssens
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Glenn Pauwelyn
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | | | - Benedicte Descamps
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | | | - Christian Vanhove
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Wen SS, Zhang TT, Xue DX, Wu WL, Wang YL, Wang Y, Ji QH, Zhu YX, Qu N, Shi RL. Metabolic reprogramming and its clinical application in thyroid cancer. Oncol Lett 2019; 18:1579-1584. [PMID: 31423225 PMCID: PMC6607326 DOI: 10.3892/ol.2019.10485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Warburg found that tumor cells exhibit high-level glycolysis, even under aerobic condition, which is known as the ‘Warburg effect’. As systemic changes in the entire metabolic network are gradually revealed, it is recognized that metabolic reprogramming has gone far beyond the imagination of Warburg. Metabolic reprogramming involves an active change in cancer cells to adapt to their biological characteristics. Thyroid cancer is a common endocrine malignant tumor whose metabolic characteristics have been studied in recent years. Some drugs targeting tumor metabolism are under clinical trial. This article reviews the metabolic changes and mechanisms in thyroid cancer, aiming to find metabolic-related molecules that could be potential markers to predict prognosis and metabolic pathways, or could serve as therapeutic targets. Our review indicates that knowledge in metabolic alteration has potential contributions in the diagnosis, treatment and prognostic evaluation of thyroid cancer, but further studies are needed for verification as well.
Collapse
Affiliation(s)
- Shi-Shuai Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Di-Xin Xue
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Wei-Li Wu
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong-Xue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Rong-Liang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
Ndaru E, Garibsingh RAA, Shi Y, Wallace E, Zakrepine P, Wang J, Schlessinger A, Grewer C. Novel alanine serine cysteine transporter 2 (ASCT2) inhibitors based on sulfonamide and sulfonic acid ester scaffolds. J Gen Physiol 2019; 151:357-368. [PMID: 30718375 PMCID: PMC6400523 DOI: 10.1085/jgp.201812276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/11/2023] Open
Abstract
The neutral amino acid transporter alanine serine cysteine transporter 2 (ASCT2) belongs to the solute carrier 1 (SLC1) family of transport proteins and transports neutral amino acids, such as alanine and glutamine, into the cell in exchange with intracellular amino acids. This amino acid transport is sodium dependent, but not driven by the transmembrane Na+ concentration gradient. Glutamine transport by ASCT2 is proposed to be important for glutamine homoeostasis in rapidly growing cancer cells to fulfill the energy and nitrogen demands of these cells. Thus, ASCT2 is thought to be a potential anticancer drug target. However, the pharmacology of the amino acid binding site is not well established. Here, we report on the synthesis and characterization of a novel class of ASCT2 inhibitors based on an amino acid scaffold with a sulfonamide/sulfonic acid ester linker to a hydrophobic group. The compounds were designed based on an improved ASCT2 homology model using the human glutamate transporter hEAAT1 crystal structure as a modeling template. The compounds were shown to inhibit with a competitive mechanism and a potency that scales with the hydrophobicity of the side chain. The most potent compound binds with an apparent affinity, K i, of 8 ± 4 µM and can block the alanine response with a K i of 40 ± 23 µM at 200 µM alanine concentration. Computational analysis predicts inhibitor interactions with the binding site through molecular docking. In conclusion, the sulfonamide/sulfonic acid ester scaffold provides facile synthetic access to ASCT2 inhibitors with a potentially large variability in chemical space of the hydrophobic side chain. These inhibitors will be useful chemical tools to further characterize the role of ASCT2 in disease as well as improve our understanding of inhibition mechanisms of this transporter.
Collapse
Affiliation(s)
- Elias Ndaru
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Rachel-Ann A Garibsingh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - YueYue Shi
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Evan Wallace
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Paul Zakrepine
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Jiali Wang
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, NY
| |
Collapse
|
12
|
van Geldermalsen M, Quek LE, Turner N, Freidman N, Pang A, Guan YF, Krycer JR, Ryan R, Wang Q, Holst J. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer 2018; 18:689. [PMID: 29940911 PMCID: PMC6019833 DOI: 10.1186/s12885-018-4599-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
Background Cancer cells require increased levels of nutrients such as amino acids to sustain their rapid growth. In particular, leucine and glutamine have been shown to be important for growth and proliferation of some breast cancers, and therefore targeting the primary cell-surface transporters that mediate their uptake, L-type amino acid transporter 1 (LAT1) and alanine, serine, cysteine-preferring transporter 2 (ASCT2), is a potential therapeutic strategy. Methods The ASCT2 inhibitor, benzylserine (BenSer), is also able to block LAT1 activity, thus inhibiting both leucine and glutamine uptake. We therefore aimed to investigate the effects of BenSer in breast cancer cell lines to determine whether combined LAT1 and ASCT2 inhibition could inhibit cell growth and proliferation. Results BenSer treatment significantly inhibited both leucine and glutamine uptake in MCF-7, HCC1806 and MDA-MB-231 breast cancer cells, causing decreased cell viability and cell cycle progression. These effects were not primarily leucine-mediated, as BenSer was more cytostatic than the LAT family inhibitor, BCH. Oocyte uptake assays with ectopically expressed amino acid transporters identified four additional targets of BenSer, and gas chromatography-mass spectrometry (GCMS) analysis of intracellular amino acid concentrations revealed that this BenSer-mediated inhibition of amino acid uptake was sufficient to disrupt multiple pathways of amino acid metabolism, causing reduced lactate production and activation of an amino acid response (AAR) through activating transcription factor 4 (ATF4). Conclusions Together these data showed that BenSer blockade inhibited breast cancer cell growth and viability through disruption of intracellular amino acid homeostasis and inhibition of downstream metabolic and growth pathways. Electronic supplementary material The online version of this article (10.1186/s12885-018-4599-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle van Geldermalsen
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Nigel Turner
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Natasha Freidman
- Transporter Biology Group, Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Angel Pang
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yi Fang Guan
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - James R Krycer
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Renae Ryan
- Transporter Biology Group, Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Qian Wang
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jeff Holst
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Kim HM, Lee YK, Koo JS. Expression of glutamine metabolism-related proteins in thyroid cancer. Oncotarget 2018; 7:53628-53641. [PMID: 27447554 PMCID: PMC5288210 DOI: 10.18632/oncotarget.10682] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/09/2016] [Indexed: 01/09/2023] Open
Abstract
PURPOSE This study aimed to investigate the expression of glutamine metabolism-related protein in tumor and stromal compartments among the histologic subtypes of thyroid cancer. RESULTS GLS1 and GDH expression in tumor and stromal compartments were the highest in AC than in other subtypes. Tumoral ASCT2 expression was higher in MC but lower in FC (p < 0.001). In PTC, tumoral GLS1 and tumoral GDH expression was higher in the conventional type than in the follicular variant (p = 0.043 and 0.001, respectively), and in PTC with BRAF V600E mutation than in PTC without BRAF V600E mutation (p<0.001). Stromal GDH positivity was the independent factor associated with short overall survival (hazard ratio: 21.48, 95% confidence interval: 2.178-211.8, p = 0.009). METHODS We performed tissue microarrays with 557 thyroid cancer cases (papillary thyroid carcinoma [PTC]: 344, follicular carcinoma [FC]: 112, medullary carcinoma [MC]: 70, poorly differentiated carcinoma [PDC]: 23, and anaplastic carcinoma [AC]: 8) and 152 follicular adenoma (FA) cases. We performed immunohistochemical staining of glutaminolysis-related proteins (glutaminase 1 [GLS1], glutamate dehydrogenase [GDH], and amino acid transporter-2 [ASCT-2]). CONCLUSION Glutamine metabolism-related protein expression differed among the histologic subtypes of thyroid cancer.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Kyung Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Ryu JE, Park HK, Choi HJ, Lee HB, Lee HJ, Lee H, Yu ES, Son WC. Expression of the glutamine metabolism-related proteins glutaminase 1 and glutamate dehydrogenase in canine mammary tumours. Vet Comp Oncol 2017; 16:239-245. [PMID: 29266697 DOI: 10.1111/vco.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023]
Abstract
Glutamine metabolism is an important metabolic pathway for cancer cell survival, and there is a critical connection between tumour growth and glutamine metabolism. Because of their similarities, canine mammary carcinomas are useful for studying human breast cancer. Accordingly, we investigated the correlations between the expression of glutamine metabolism-related proteins and the pathological features of canine mammary tumours. We performed immunohistochemical and western blot analysis of 39 mammary tumour tissues. In immunohistochemical analysis, the expression of glutaminase 1 (GLS1) in the epithelial region increased according to the histological grade (P < .005). In the stromal region, complex-type tumours displayed significantly higher GLS1 intensity than simple-type tumours. However, glutamate dehydrogenase expression did not show the same tendencies as GLS1. The western blot results were consistent with the immunohistochemical findings. These results suggest that the expression of GLS1 is correlates with clinicopathological factors in canine mammary tumours and shows a similar pattern to human breast cancer.
Collapse
Affiliation(s)
- J-E Ryu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-K Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-J Choi
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-B Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H-J Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - H Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Pharma R&D Division, GeneOne Life Science, Inc., Seoul, Republic of Korea
| | - E-S Yu
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - W-C Son
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
15
|
Sun WY, Kim HM, Jung WH, Koo JS. Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J Transl Med 2016; 14:168. [PMID: 27277113 PMCID: PMC4898323 DOI: 10.1186/s12967-016-0915-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression and clinical implications of proteins related to serine/glycine metabolism in different subtypes of thyroid cancer. METHODS Tissue microarray (TMA) was constructed with tissues from 557 thyroid cancers, consisting of 244 papillary thyroid carcinomas (PTC), 112 follicular carcinomas (FC), 70 medullary carcinomas (MC), 23 poorly differentiated carcinomas (PDC), and 8 anaplastic carcinomas (AC). Immunohistochemical staining of the serine/glycine metabolism-related molecules phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase, (PSAT), phosphoserine phosphatase (PSPH), serine hydromethyl transferase (SHMT), and glycine decarboxylase (GLDC) was performed with the TMA blocks and the results were analyzed together with clinicopathologic parameters. RESULTS The expression of serine/glycine metabolism-related proteins differed among thyroid cancer subtypes. The expression rate of PHGDH (p < 0.001), PSAT1 (p = 0.001), PSPH (p = 0.008), and tumoral SHMT1 (p < 0.001) was higher in PDC and PTC (78.3, 21.7, 21.7, 30.4 and 63.4, 18.6, 12.8, 31.4 %, respectively), and lowest in MC (15.7, 1.4, 0.0, 10.0 %). Stromal SHMT1 expression was highest in AC (62.5 %) and absent in all FC (p < 0.001). In PTC, positivity for PSPH (p = 0.041), tumoral SHMT1 (p = 0.018), and stromal SHMT1 (p < 0.001) expression was higher in the conventional type compared to follicular type (14.1 versus 2.5 %, 33.6 versus 15.0 %, 42.1 versus 10.0 %, respectively). BRAF V600E mutation was associated with a higher rate of PHGDH (p < 0.001), PSAT1 (p = 0.001), PSPH (p < 0.001), tumoral SHMT1 (p = 0.001), stromal SHMT1 (p < 0.001), and GLDC (p < 0.001) expression compared to non-mutant cases (73.5 versus 40.6 %, 23.1 versus 8.5 %, 17.6 versus 1.9 %, 37.0 versus 18.9 %, 45.8 versus 21.7 %, 21.8 versus 6.6 %, respectively). In univariate analysis, stromal SHMT1 expression was associated with shorter disease-free survival (p = 0.015) in follicular variant PTC, and GLDC positivity was associated with shorter overall survival (OS) in sclerotic stromal type (p = 0.002). In FC, minimally invasive type, PSPH positivity correlated with shorter OS (p = 0.045) and in MC, PHGDH positivity correlated with shorter OS (p = 0.034). CONCLUSION The expression of serine/glycine metabolism-related proteins differs among different thyroid cancer types, with a higher rate of expression in PDC and PTC, and lower rate of expression in MC. In PTC, the rate of expression is lower in the follicular variant and higher in cases with BRAF V600E mutation.
Collapse
Affiliation(s)
- Woo Young Sun
- Department of Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Daejeon, South Korea
| | - Hye Min Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Woo-Hee Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Ja Seung Koo
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
16
|
Liu Y, Yang L, An H, Chang Y, Zhang W, Zhu Y, Xu L, Xu J. High expression of Solute Carrier Family 1, member 5 (SLC1A5) is associated with poor prognosis in clear-cell renal cell carcinoma. Sci Rep 2015; 5:16954. [PMID: 26599282 PMCID: PMC4657035 DOI: 10.1038/srep16954] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Solute Carrier Family 1, member 5 (SLC1A5), also named as ASCT2, a major glutamine transporter, is highly expressed in various malignancies and plays a critical role in the transformation, growth and survival of cancer cells. The aim of this study was to assess the clinical significance of SLC1A5 in patients with clear-cell renal cell carcinoma (ccRCC). SLC1A5 expression was evaluated by immunohistochemistry on tissue microarrays. Kaplan-Meier method was conducted to compare survival curves. Univariate and multivariate Cox regression models were applied to assess the impact of prognostic factors on overall survival (OS). A nomogram was then constructed on the basis of the independent prognosticators identified on multivariate analysis. The predictive ability of the models was compared using Receiver operating characteristic (ROC) analysis. Our data indicated that high expression of SLC1A5 was significantly associated with advanced TNM stage, higher Fuhrman grade and shorter OS in ccRCC patients. Multivariate analysis confirmed that SLC1A5 was an independent prognosticator for OS. A nomogram integrating SLC1A5 and other independent prognosticators was constructed, which showed a better prognostic value for OS than TNM staging system. In conclusion, high SLC1A5 expression is an independent predictor of adverse clinical outcome in ccRCC patients after surgery.
Collapse
Affiliation(s)
- Yidong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huimin An
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|