1
|
The potential role of MGMT rs12917 polymorphism in cancer risk: an updated pooling analysis with 21010 cases and 34018 controls. Biosci Rep 2018; 38:BSR20180942. [PMID: 30232235 PMCID: PMC6435461 DOI: 10.1042/bsr20180942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aimed at determining the potential role of rs12917 polymorphism of the O-6-methylguanine-DNA methyltransferase (MGMT) gene in the occurrence of cancer. Based on the available data from the online database, we performed an updated meta-analysis. We retrieved 537 articles from our database research and finally selected a total of 54 case–control studies (21010 cases and 34018 controls) for a series of pooling analyses. We observed an enhanced risk in cancer cases compared with controls, using the genetic models T/T compared with C/C (P-value of association test <0.001; odds ratio (OR) = 1.29) and T/T compared with C/C+C/T (P<0.001; OR = 1.32). We detected similar positive results in the subgroups ‘Caucasian’, and ‘glioma’ (all P<0.05; OR > 1). However, we detected negative results in our analyses of most of the other subgroups (P>0.05). Begg’s and Egger’s tests indicated that the results were free of potential publication bias, and sensitivity analysis suggested the stability of the pooling results. In summary, the T/T genotype of MGMT rs12917 is likely to be linked to an enhanced susceptibility to cancer overall, especially glioma, in the Caucasian population.
Collapse
|
2
|
Hsu CY, Ho HL, Lin SC, Ho TDH, Ho DMT. The MGMT promoter single-nucleotide polymorphism rs1625649 had prognostic impact on patients with MGMT methylated glioblastoma. PLoS One 2017; 12:e0186430. [PMID: 29036186 PMCID: PMC5643071 DOI: 10.1371/journal.pone.0186430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/29/2017] [Indexed: 01/02/2023] Open
Abstract
Promoter methylation is the most significant mechanism to regulate O6-methylguanine-DNA-methyltransferase (MGMT) expression. Single-nucleotide polymorphisms (SNPs) in the MGMT promoter region may also play a role. The aim of this study was to evaluate the clinical significance of SNPs in the MGMT promoter region of glioblastoma. Genomic DNAs from 118 glioblastomas were collected for polymerase chain reaction (PCR) amplification. Sanger sequencing was used to sequence the MGMT promoter region to detect SNPs. The results were correlated with MGMT status and patient survival. Rs1625649 was the only polymorphic SNP located at the MGMT promoter region in 37.5% of glioblastomas. Homozygous rs1625649 (AA genotype) was correlated with a higher MGMT methylation level and a lower protein expression, but the result was not statistically significant. In patients with MGMT methylated glioblastoma, cases with homozygous rs1625649 (AA genotype) were significantly associated with a lack of MGMT protein expression and a better progression-free survival (PFS) than the cases with wild type rs1625649 (CC genotype) or heterozygous rs1625649 (CA genotype). The survival impact was significant in multivariate analyses. In conclusion, the MGMT promoter homozygous rs1625649 (AA genotype) was found to correlate with a better PFS in patients with MGMT methylated glioblastoma.
Collapse
Affiliation(s)
- Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tiffany Dai-Hwa Ho
- Department of Computer Science and Department of Statistics, Duke University, Durham, United States of America
| | - Donald Ming-Tak Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Rehman AU, Saikia S, Iqbal MA, Ahmad I, Sadaf, Anees A, Aravinda PS, Mishra PK, Hedau S, Saluja SS, Medhi S, Husain SA. Decreased expression of MGMT in correlation with aberrant DNA methylation in esophageal cancer patients from North India. Tumour Biol 2017. [DOI: 10.1177/1010428317705770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Asad Ur Rehman
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Snigdha Saikia
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Guwahati, India
| | | | - Istaq Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sadaf
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Anees
- Department of Surgery, J.N. Medical College Hospital, Aligarh Muslim University (AMU), Aligarh, India
| | - PS Aravinda
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Hospital and Maulana Azad Medical College, New Delhi, India
| | - Pramod Kumar Mishra
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Hospital and Maulana Azad Medical College, New Delhi, India
| | - Suresh Hedau
- Department of Cellular and Molecular Biology Virus Diseases, Institute of Cytology & Preventive Oncology (ICPO), Noida, India
| | - Sundeep Singh Saluja
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Hospital and Maulana Azad Medical College, New Delhi, India
| | - Subhash Medhi
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Guwahati, India
| | | |
Collapse
|
4
|
Wang HW, Xu ZK, Song Y, Liu YG. Correlations of MGMT genetic polymorphisms with temozolomide resistance and prognosis of patients with malignant gliomas: a population-based study in China. Cancer Gene Ther 2017; 24:215-220. [PMID: 28409559 DOI: 10.1038/cgt.2017.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/22/2022]
Abstract
This study aims to investigate the associations of O6-methylguanine-DNA methyltransferase (MGMT) genetic polymorphisms (Leu84Phe and Ile143Val) with temozolomide (TMZ) resistance and prognosis of patients with malignant gliomas. A total of 212 patients diagnosed with malignant gliomas were enrolled in this study as the case group. All of these patients took oral TMZ and were assigned into the TMZ-sensitive (complete response+partial response) and the TMZ-resistant (stable disease+progressive disease) groups based on the clinical response after chemotherapy. The polymerase chain reaction-restriction fragment length polymorphism was used to identify the gene polymorphism of Leu84Phe and Ile143Val. The survival time and survival outcomes of all the patients were obtained by follow-up. There were significant differences in the genotype and allele of Leu84Phe between the TMZ-sensitive and the TMZ-resistant groups. The CT, TT and CT+TT genotypes and the T allele of MGMT gene Leu84Phe may be associated with increasing TMZ resistance in patients with malignant gliomas. Logistic regression analysis showed that Leu84Phe of MGMT gene and pathological grade were independent risk factors for the increase of TMZ resistance in patients with malignant gliomas. Kaplan-Meier survival curve revealed that the average survival time of patients with the CT+TT and CC genotypes of Leu84Phe in the two groups was statistically significant. COX regression analysis showed that Leu84Phe, degree of resection and pathological grade were independent prognostic factors for patients with malignant gliomas. Our study demonstrates that Leu84Phe of MGMT gene might be a risk factor of TMZ resistance and poor prognosis of patients with malignant gliomas.
Collapse
Affiliation(s)
- H-W Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Z-K Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Y Song
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Y-G Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
5
|
Das M, Sharma SK, Sekhon GS, Saikia BJ, Mahanta J, Phukan RK. Promoter Methylation of MGMT Gene in Serum of Patients with Esophageal Squamous Cell Carcinoma in North East India. Asian Pac J Cancer Prev 2014; 15:9955-60. [DOI: 10.7314/apjcp.2014.15.22.9955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Appelqvist F, Yhr M, Erlandson A, Martinsson T, Enerbäck C. Deletion of the MGMT gene in familial melanoma. Genes Chromosomes Cancer 2014; 53:703-11. [PMID: 24801985 DOI: 10.1002/gcc.22180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Abstract
The DNA repair gene MGMT (O-6-methylguanine-DNA methyltransferase) is important for maintaining normal cell physiology and genomic stability. Alterations in MGMT play a critical role in the development of several types of cancer, including glioblastoma, lung cancer, and colorectal cancer. The purpose of this study was to explore the function of genetic alterations in MGMT and their connection with familial melanoma (FM). Using multiplex ligation-dependent probe amplification, we identified a deletion that included the MGMT gene in one of 64 families with a melanoma predisposition living in western Sweden. The mutation segregated with the disease as a heterozygous deletion in blood-derived DNA, but a homozygous deletion including the promoter region and exon 1 was seen in tumor tissue based on Affymetrix 500K and 6.0 arrays. By sequence analysis of the MGMT gene in the other 63 families with FM from western Sweden, we identified four common polymorphisms, nonfunctional, as predominantly described in previous studies. We conclude that inherited alterations in the MGMT gene might be a rare cause of FM, and we suggest that MGMT contributes to melanoma predisposition.
Collapse
Affiliation(s)
- Frida Appelqvist
- Department of Dermatology, Institute of Clinical Sciences, Sahlgrenska University Hospital, SE-413 45, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
7
|
Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 2014; 19:199-213. [PMID: 24780560 DOI: 10.1016/j.dnarep.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Zhang Y, Jia Q, Xue P, Liu Y, Xiong T, Yang J, Song C, He Q, Du L. The -786T > C polymorphism in the NOS3 gene is associated with increased cancer risk. Tumour Biol 2014; 35:3535-40. [DOI: 10.1007/s13277-013-1467-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022] Open
|
9
|
The CIK cells stimulated with combination of IL-2 and IL-15 provide an improved cytotoxic capacity against human lung adenocarcinoma. Tumour Biol 2013; 35:1997-2007. [PMID: 24104501 DOI: 10.1007/s13277-013-1265-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/25/2013] [Indexed: 12/29/2022] Open
Abstract
Generation of cytokine-induced killer (CIK) cells is an emerging approach in adoptive donor lymphocyte infusion for patients with a wide range of tumors. However, our previous in vitro studies have shown that the killing efficacy of CIK cells against lung cancer was lower than other tumor cells, while the underlying mechanisms are not clear. We explored the feasibility to improve CIK cells mediated cytotoxicity against lung cancer. Interleukin (IL)-15 is a pleiotropic cytokine that stimulates cytolytic activity and cytokine secretion of NK cells, which may enhance the cytotoxic activity of CIK cells. In this study, we intended to stimulate the CIK cells by IL-2 in combination with IL-15 in cell expansion to achieve enhanced cytotoxicity against lung cancer cells. The different phenotypes of IL-2 or combination of IL-2 and IL-15 stimulated cytokine-induced killer cells were determined, and the improved cytotoxicity of IL-2 and IL-15 induced CIK cells against lung adenocarcinoma were evaluated both in vitro and in vivo. CIK cells stimulated with both IL-2 and IL-15 has shown greater proliferative potential than CIK cells treated with IL-2 alone. IL-15 induction also has driven the expansion of CD3+CD56+ subset and significantly enhanced cytotoxicity against tumor cells. Further analysis has demonstrated that CIKIL-2&IL-15 injected mice models have shown significant tumor regression and lower expression level of CyclinD1 in tumor tissue. This study has provided preclinical evidences that CIKIL-2&IL-15 with enhanced cytotoxicity may offer alternative treatment option for patients with lung cancer.
Collapse
|