1
|
Tian L, Yao K, Liu K, Han B, Dong H, Zhao W, Jiang W, Qiu F, Qu L, Wu Z, Zhou B, Zhong M, Zhao J, Qiu X, Zhong L, Guo X, Shi T, Hong X, Lu S. PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression. Oncogene 2020; 39:3145-3162. [PMID: 32060423 DOI: 10.1038/s41388-020-1205-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 11/09/2022]
Abstract
Dysregulation of PARP10 has been implicated in various tumor types and plays a vital role in delaying hepatocellular carcinoma (HCC) progression. However, the mechanisms controlling the expression and activity of PARP10 in HCC remain mostly unknown. The crosstalk between PLK1, PARP10, and NF-κB pathway in HCC was determined by performing different in vitro and in vivo assays, including mass spectrometry, kinase, MARylation, chromatin immunoprecipitation, and luciferase reporter measurements. Functional examination was performed by using small chemical drug, cell culture, and mice HCC models. Correlation between PLK1, NF-κB, and PARP10 expression was determined by analyzing clinical samples of HCC patients with using immunohistochemistry. PLK1, an important regulator for cell mitosis, directly interacts with and phosphorylates PARP10 at T601. PARP10 phosphorylation at T601 significantly decreases its binding to NEMO and disrupts its inhibition to NEMO ubiquitination, thereby enhancing the transcription activity of NF-κB toward multiple target genes and promoting HCC development. In turn, NF-κB transcriptionally inhibits the PARP10 promoter activity and leads to its downregulation in HCC. Interestingly, PLK1 is mono-ADP-ribosylated by PARP10 and the MARylation of PLK1 significantly inhibits its kinase activity and oncogenic function in HCC. Clinically, the expression levels of PLK1 and phosphor-p65 show an inverse correlation with PARP10 expression in human HCC tissues. These findings are the first to uncover a PLK1/PARP10/NF-κB signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with NF-κB antagonists, as potential effective therapeutics for PARP10-expressing HCC.
Collapse
Affiliation(s)
- Lantian Tian
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
- Department of Hepatobiliary Surgery, First Clinical Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ke Yao
- The Department of Gynaecology and Obstetrics of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Kun Liu
- The General Surgery Department, The 971st Hospital of the PLA Navy, Qingdao, Shandong, China
| | - Bing Han
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hanguang Dong
- The Department of General Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Wei Zhao
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Weibo Jiang
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Fabo Qiu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Linlin Qu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Zehua Wu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Bin Zhou
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lifeng Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaofeng Guo
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Zhongshan University, Guangzhou, Guangdong, China
| | - Tianlu Shi
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shichun Lu
- Department of Hepatobiliary Surgery, First Clinical Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Recent advances in epigenetics indicate the involvement of several epigenetic modifications in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to summarize our understanding of recent advances in the epigenetic regulation of AKI and provide mechanistic insight into the role of acetylation, methylation, and microRNA expression in the pathological processes of AKI. RECENT FINDINGS Enhancement of protein acetylation by pharmacological inhibition of histone deacetylases leads to more severe tubular injury and impairment of renal structural and functional recovery. The changes in promoter DNA methylation occur in the kidney with ischemia/reperfusion. microRNA expression is associated with regulation of both renal injury and regeneration after AKI. SUMMARY Recent studies on epigenetic regulation indicate that acetylation, methylation, and microRNA expression are critically implicated in the pathogenesis of AKI. Strategies targeting epigenetic processes may hold a therapeutic potential for patients with AKI.
Collapse
|
3
|
Liu J, Han J, Lv H. ADPRtool: A novel predicting model for identification of ASP-ADP-Ribosylation sites of human proteins. J Bioinform Comput Biol 2015; 13:1550015. [PMID: 26017462 DOI: 10.1142/s0219720015500158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Post-translational modifications (PTMs) occur in the vast majority of proteins, and they are essential for many protein functions. Computational prediction of the residue location of PTMs enhances the functional characterization of proteins. ADP-Ribosylation is an important type of PTM, because it is implicated in apoptosis, DNA repair, regulation of cell proliferation, and protein synthesis. However, mass spectrometric approaches have difficulties in identifying a vast number of protein ADP-Ribosylation sites. Therefore, a computational method for predicting ADP-Ribosylation sites of human proteins seems useful and necessary. Four types of sequence features and an incremental feature selection technique are utilized to predict protein ADP-Ribosylation sites. The final feature set for ADPR prediction modeling is optimized, based on a minimum redundancy maximum relevance criterion, so as to make more accurate predictions on aspartic acid ADPR modified residues. Our prediction model, ADPRtool, is capable to predict Asp-ADP-Ribosylation sites with a total accuracy of 85.45%, which is as good as most computational PTM site predictors. By using a sequence-based computational method, a new ADP-Ribosylation site prediction model - ADPRtool, is developed, and it has shown great accuracies with total accuracy, Matthew's correlation coefficient and area under receiver operating characteristic curve.
Collapse
Affiliation(s)
- Jun Liu
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jiuqiang Han
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Hongqiang Lv
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|