1
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
3
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
4
|
Oncogenic Role of Connective Tissue Growth Factor Is Associated with Canonical TGF-β Cascade in Colorectal Cancer. Genes (Basel) 2022; 13:genes13040689. [PMID: 35456495 PMCID: PMC9031605 DOI: 10.3390/genes13040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
TGF-β signaling pathways promote tumour development and control several downstream genes such as CTGF and MMPs. This study aimed to investigate the association between CTGF and MMP-1 mRNA expressions with clinicopathological status and survival rate in colorectal cancer patients. We investigated expression levels of CTGF and MMP-1 genes in paraffin-embedded tumours and adjacent normal tissue blocks (ADJ) by Real Time-PCR. Then, the expression of Smad2 and Smad4 proteins in the TGF-β canonical pathway was evaluated by immunohistochemistry. Finally, the correlation between CTGF, MMP-1, and the canonical TGF-β-signalling pathway with the clinicopathological features was investigated. Expression levels of MMP-1and CTGF were higher in tumours compared with adjacent normal tissues. Overexpression levels of MMP-1 and CTGF were associated with lymph node metastasis, distant metastasis, tumour histopathological grading, advanced stage, and poor survival (p < 0.05). Additionally, a significant association between the upregulation of MMP-1 and tumour location was noted. Upregulation of Smad2 and Smad4 proteins were also significantly correlated with lymph node metastasis, distant metastasis, advanced stage, and poor survival (p < 0.0001). This study showed that canonical TGF-β signalling regulates both CTGF and MMP-1 expression and CRC progression. Moreover, TGF-β signalling and its downstream genes could be used as novel biomarkers and novel approaches for targeted therapy in CRC.
Collapse
|
5
|
Lv X, Xu G. Regulatory role of the transforming growth factor-β signaling pathway in the drug resistance of gastrointestinal cancers. World J Gastrointest Oncol 2021; 13:1648-1667. [PMID: 34853641 PMCID: PMC8603464 DOI: 10.4251/wjgo.v13.i11.1648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer, including esophageal, gastric, and colorectal cancer, is one of the most prevalent types of malignant carcinoma and the leading cause of cancer-related deaths. Despite significant advances in therapeutic strategies for GI cancers in recent decades, drug resistance with various mechanisms remains the prevailing cause of therapy failure in GI cancers. Accumulating evidence has demonstrated that the transforming growth factor (TGF)-β signaling pathway has crucial, complex roles in many cellular functions related to drug resistance. This review summarizes current knowledge regarding the role of the TGF-β signaling pathway in the resistance of GI cancers to conventional chemotherapy, targeted therapy, immunotherapy, and traditional medicine. Various processes, including epithelial-mesenchymal transition, cancer stem cell development, tumor microenvironment alteration, and microRNA biogenesis, are proposed as the main mechanisms of TGF-β-mediated drug resistance in GI cancers. Several studies have already indicated the benefit of combining antitumor drugs with agents that suppress the TGF-β signaling pathway, but this approach needs to be verified in additional clinical studies. Moreover, the identification of potential biological markers that can be used to predict the response to TGF-β signaling pathway inhibitors during anticancer treatments will have important clinical implications in the future.
Collapse
Affiliation(s)
- Xiaoqun Lv
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Zarrin V, Moghadam ER, Hashemi F, Makvandi P, Samarghandian S, Khan H, Hashemi F, Najafi M, Mirzaei H. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front Pharmacol 2020; 11:585413. [PMID: 33381035 PMCID: PMC7767860 DOI: 10.3389/fphar.2020.585413] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immune response, proliferation, migration and angiogenesis are juts a few of cellular events that are regulated by transforming growth factor-β (TGF-β) in cells. A number of studies have documented that TGF-β undergoes abnormal expression in different diseases, e.g., diabetes, cancer, fibrosis, asthma, arthritis, among others. This has led to great fascination into this signaling pathway and developing agents with modulatory impact on TGF-β. Curcumin, a natural-based compound, is obtained from rhizome and roots of turmeric plant. It has a number of pharmacological activities including antioxidant, anti-inflammatory, anti-tumor, anti-diabetes and so on. Noteworthy, it has been demonstrated that curcumin affects different molecular signaling pathways such as Wnt/β-catenin, Nrf2, AMPK, mitogen-activated protein kinase and so on. In the present review, we evaluate the potential of curcumin in regulation of TGF-β signaling pathway to corelate it with therapeutic impacts of curcumin. By modulation of TGF-β (both upregulation and down-regulation), curcumin ameliorates fibrosis, neurological disorders, liver disease, diabetes and asthma. Besides, curcumin targets TGF-β signaling pathway which is capable of suppressing proliferation of tumor cells and invading cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Haroon Khan
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fardin Hashemi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Hu C, Zhang M, Moses N, Hu CL, Polin L, Chen W, Jang H, Heyza J, Malysa A, Caruso JA, Xiang S, Patrick S, Stemmer P, Lou Z, Bai W, Wang C, Bepler G, Zhang XM. The USP10-HDAC6 axis confers cisplatin resistance in non-small cell lung cancer lacking wild-type p53. Cell Death Dis 2020; 11:328. [PMID: 32382008 PMCID: PMC7206099 DOI: 10.1038/s41419-020-2519-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Ubiquitin-specific peptidase 10 (USP10) stabilizes both tumor suppressors and oncogenes in a context-dependent manner. However, the nature of USP10’s role in non-small cell lung cancer (NSCLC) remains unclear. By analyzing The Cancer Genome Atlas (TCGA) database, we have shown that high levels of USP10 are associated with poor overall survival in NSCLC with mutant p53, but not with wild-type p53. Consistently, genetic depletion or pharmacological inhibition of USP10 dramatically reduces the growth of lung cancer xenografts lacking wild-type p53 and sensitizes them to cisplatin. Mechanistically, USP10 interacts with, deubiquitinates, and stabilizes oncogenic protein histone deacetylase 6 (HDAC6). Furthermore, reintroducing either USP10 or HDAC6 into a USP10-knockdown NSCLC H1299 cell line with null-p53 renders cisplatin resistance. This result suggests the existence of a “USP10-HDAC6-cisplatin resistance” axis. Clinically, we have found a positive correlation between USP10 and HDAC6 expression in a cohort of NSCLC patient samples. Moreover, we have shown that high levels of USP10 mRNA correlate with poor overall survival in a cohort of advanced NSCLC patients who received platinum-based chemotherapy. Overall, our studies suggest that USP10 could be a potential biomarker for predicting patient response to platinum, and that targeting USP10 could sensitize lung cancer patients lacking wild-type p53 to platinum-based therapy.
Collapse
Affiliation(s)
- Chen Hu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Mu Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Niko Moses
- Cancer Biology Graduate Program, Karmanos Cancer Institute, 4100 John R. St., Detroit, MI, 48201, USA
| | - Cong-Li Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Lisa Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Hyejeong Jang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Joshua Heyza
- Cancer Biology Graduate Program, Karmanos Cancer Institute, 4100 John R. St., Detroit, MI, 48201, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Agnes Malysa
- Cancer Biology Graduate Program, Karmanos Cancer Institute, 4100 John R. St., Detroit, MI, 48201, USA
| | - Joseph A Caruso
- Proteomics Facility Core, Institute of Environmental Health Sciences, Wayne State University, Scott Hall of Medical Sciences, 540 East Canfield, Room 2105, Detroit, MI, 48201, USA
| | - Shengyan Xiang
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Steve Patrick
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Paul Stemmer
- Proteomics Facility Core, Institute of Environmental Health Sciences, Wayne State University, Scott Hall of Medical Sciences, 540 East Canfield, Room 2105, Detroit, MI, 48201, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wenlong Bai
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Gerold Bepler
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA.
| | - Xiaohong Mary Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Mutation Enrichment and Transcriptomic Activation Signatures of 419 Molecular Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020271. [PMID: 31979117 PMCID: PMC7073226 DOI: 10.3390/cancers12020271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is linked with massive changes in regulation of gene networks. We used high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first time, we calculated mutation enrichment values and activation levels for these pathways. We found that pathway activation profiles were largely congruent among the different cancer types. However, we observed no correlation between mutation enrichment and expression changes both at the gene and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA repair pathways also demonstrated the highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the biggest proportions of representatives among the outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other groups of molecular pathways.
Collapse
|
9
|
Katta S, Srivastava A, Thangapazham RL, Rosner IL, Cullen J, Li H, Sharad S. Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells. Int J Mol Sci 2019; 20:ijms20194891. [PMID: 31581661 PMCID: PMC6801832 DOI: 10.3390/ijms20194891] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/25/2022] Open
Abstract
The androgen receptor is one of the key targets for prostate cancer treatment. Despite its less satisfactory effects, chemotherapy is the most common treatment option for metastatic and/or castration-resistant patients. There are constant needs for novel anti-prostate cancer therapeutic/prevention agents. Curcumin, a known chemo-preventive agent, was shown to inhibit prostate cancer cell growth. This study aimed to unravel the inhibitory effect of curcumin in prostate cancer through analyzing the alterations of expressions of curcumin targeting genes clusters in androgen-dependent LNCaP cells and androgen-independent metastatic C4-2B cells. Hierarchical clustering showed the highest number of differentially expressed genes at 12 h post treatment in both cells, suggesting that the androgen-dependent/independent manner of curcumin impacts on prostate cancer cells. Evaluation of significantly regulated top canonical pathways highlighted that Transforming growth factor beta (TGF-β), Wingless-related integration site (Wnt), Phosphoinositide 3-kinase/Protein Kinase B/ mammalian target of rapamycin (PIK3/AKT(PKB)/mTOR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling were primarily inhibited, and Phosphatase and tensin homolog (PTEN) dependent cell cycle arrest and apoptosis pathways were elevated with curcumin treatment. The short term (3–24 h) and long term (48 h) effect of curcumin treatment revealed 31 and four genes modulated in both cell lines. TGF-β signaling, including the androgen/TGF-β inhibitor Prostate transmembrane protein androgen-induced 1 (PMEPA1), was the only pathway impacted by curcumin treatment after 48 h. Our findings also established that MYC Proto-Oncogene, basic helix-loop-helix (bHLH) Transcription Factor (MYC) signaling was down-regulated in curcumin-treated cell lines. This study established, for the first time, novel gene-networks and signaling pathways confirming the chemo-preventive and cancer-growth inhibitory nature of curcumin as a natural anti-prostate cancer compound.
Collapse
Affiliation(s)
- Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Arun Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Rajesh L Thangapazham
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Inger L Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Department of Urology, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, USA.
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| |
Collapse
|
10
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
11
|
Ganesan R, Sivalingam N. Transforming Growth Factor Beta 2 Inhibits Growth and Proliferation Potential of Smad4 and p53 Mutated Human Colon Adenocarcinoma Cells. Pathol Oncol Res 2018; 25:819-821. [PMID: 29948613 DOI: 10.1007/s12253-018-0423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ramamoorthi Ganesan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India.
| |
Collapse
|
12
|
Motieghader H, Kouhsar M, Najafi A, Sadeghi B, Masoudi-Nejad A. mRNA-miRNA bipartite network reconstruction to predict prognostic module biomarkers in colorectal cancer stage differentiation. MOLECULAR BIOSYSTEMS 2018; 13:2168-2180. [PMID: 28861579 DOI: 10.1039/c7mb00400a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomarker detection is one of the most important and challenging problems in cancer studies. Recently, non-coding RNA based biomarkers such as miRNA expression levels have been used for early diagnosis of many cancer types. In this study, a systems biology approach was used to detect novel miRNA based biomarkers for CRC diagnosis in early stages. The mRNA expression data from three CRC stages (Low-grade Intraepithelial Neoplasia (LIN), High-grade Intraepithelial Neoplasia (HIN) and Adenocarcinoma) were used to reconstruct co-expression networks. The networks were clustered to extract co-expression modules and detected low preserved modules among CRC stages. Then, the experimentally validated mRNA-miRNA interaction data were applied to reconstruct three mRNA-miRNA bipartite networks. Twenty miRNAs with the highest degree (hub miRNAs) were selected in each bipartite network to reconstruct three bipartite subnetworks for further analysis. The analysis of these hub miRNAs in the bipartite subnetworks revealed 30 distinct important miRNAs as prognostic markers in CRC stages. There are two novel CRC related miRNAs (hsa-miR-190a-3p and hsa-miR-1277-5p) in these 30 hub miRNAs that have not been previously reported in CRC. Furthermore, a drug-gene interaction network was reconstructed to detect potential candidate drugs for CRC treatment. Our analysis shows that the hub miRNAs in the mRNA-miRNA bipartite network are very essential in CRC progression and should be investigated precisely in future studies. In addition, there are many important target genes in the results that may be critical in CRC progression and can be analyzed as therapeutic targets in future research.
Collapse
Affiliation(s)
- Habib Motieghader
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
13
|
Agarwal A, Kasinathan A, Ganesan R, Balasubramanian A, Bhaskaran J, Suresh S, Srinivasan R, Aravind KB, Sivalingam N. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr Res 2018; 51:67-81. [PMID: 29673545 DOI: 10.1016/j.nutres.2017.12.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/31/2017] [Accepted: 12/31/2017] [Indexed: 11/25/2022]
Abstract
Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53.
Collapse
Affiliation(s)
- Ayushi Agarwal
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Akiladdevi Kasinathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Ramamoorthi Ganesan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Akhila Balasubramanian
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Jahnavi Bhaskaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Samyuktha Suresh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Revanth Srinivasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - K B Aravind
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India.
| |
Collapse
|
14
|
Zhou R, Huang Y, Cheng B, Wang Y, Xiong B. TGFBR1*6A is a potential modifier of migration and invasion in colorectal cancer cells. Oncol Lett 2018; 15:3971-3976. [PMID: 29467907 DOI: 10.3892/ol.2018.7725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 transforming growth factor β receptor (TGFBR1)*6A, a common hypomorphic variant of TGFBR1, may act as a susceptibility allele in colorectal cancer. However, the contribution of TGFBR1*6A to colorectal cancer development is largely unknown. To test the hypothesis that TGFBR1*6A promotes colorectal cancer invasion and metastasis via Smad-independent transforming growth factor-β (TGF-β) signaling, the effect of TGFBR1*6A on the invasion of colorectal cancer cells was assessed. pCMV5-TGFBR1*6A-HA plasmids were transfected into SW48 and DLD-1 cells by Lipofectamine-mediated DNA transfection. The effect of TGF-β1 on the proliferation of SW48 and DLD-1 cells transfected with TGFBR1*6A was determined by MTT assay. The effects of the TGF-β1 on the invasion of the transfected SW48 and DLD-1 cells were determined using Matrigel-coated plates. Transforming migrating chambers were used to determine the effects of TGF-β1 on the migration of the transfected SW48 and DLD-1 cells. Western blot analysis was used to determine the expression of phosphorylated (p-) extracellular-signal-regulated kinase (ERK), p-P38 and p-SMAD family member 2 in SW48 cells. Using transfected TGFBR1*6A SW48 and DLD-1 cell lines our group demonstrated that, in comparison with TGFBR1*9A, TGFBR1*6A is capable of switching TGF-β1 growth-inhibitory signals into growth-stimulatory signals which significantly increased the invasion of SW48 and DLD-1 cells. Functional assays indicated that TGFBR1*6A weakened Smad-signaling but increased ERK and p38 signaling, which are crucial mediators of cell migration and invasion. From this, it was possible to conclude that TGFBR1*6A enhanced SW48 cell migration and invasion through the mitogen-activated protein kinase pathway and that it may contribute to colorectal cancer progression in a TGF-β1/Smad signaling-independent manner. This suggests that TGFBR1*6A may possess oncogenic properties and that it may affect the migration and invasion of colorectal cancer cells.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ying Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Boran Cheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yulei Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
15
|
Bansal M, Singh N, Pal S, Dev I, Ansari KM. Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Lin YH, Chen CY, Chou LY, Chen CH, Kang L, Wang CZ. Enhancement of Bone Marrow-Derived Mesenchymal Stem Cell Osteogenesis and New Bone Formation in Rats by Obtusilactone A. Int J Mol Sci 2017; 18:ijms18112422. [PMID: 29140298 PMCID: PMC5713390 DOI: 10.3390/ijms18112422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The natural pure compound obtusilactone A (OA) was identified in Cinnamomum kotoense Kanehira & Sasaki, and shows effective anti-cancer activity. We studied the effect of OA on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). OA possesses biocompatibility, stimulates Alkaline Phosphatase (ALP) activity and facilitates mineralization of BMSCs. Expression of osteogenesis markers BMP2, Runx2, Collagen I, and Osteocalcin was enhanced in OA-treated BMSCs. An in vivo rat model with local administration of OA via needle implantation to bone marrow-residing BMSCs revealed that OA increased the new bone formation and trabecular bone volume in tibias. Micro-CT images and H&E staining showed more trabecular bone at the needle-implanted site in the OA group than the normal saline group. Thus, OA confers an osteoinductive effect on BMSCs via induction of osteogenic marker gene expression, such as BMP2 and Runx2 expression and subsequently elevates ALP activity and mineralization, followed by enhanced trabecular bone formation in rat tibias. Therefore, OA is a potential osteoinductive drug to stimulate new bone formation by BMSCs.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Kaohsiung 807, Taiwan.
| | - Liang-Yin Chou
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Hsu CW, Wang JC, Liao WI, Chien WC, Chung CH, Tsao CH, Wu YF, Liao MT, Tsai SH. Association between malignancies and Marfan syndrome: a population-based, nested case-control study in Taiwan. BMJ Open 2017; 7:e017243. [PMID: 29042385 PMCID: PMC5652471 DOI: 10.1136/bmjopen-2017-017243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Marfan syndrome (MFS) involves a deficiency of the structural extracellular matrix component fibrillin-1 and overactivation of the transforming growth factor-β (TGF-β) signalling pathway. The TGF-β signalling pathway also actively participates in malignant transformation. Although anecdotal case reports have suggested associations between MFS/MFS-like conditions and several haematological and solid malignancies, such associations have not been thoroughly evaluated in large-scale studies. We sought to use a nationwide healthcare insurance claim database to evaluate whether patients with MFS are at increased risk of malignancy. PATIENTS AND METHODS We conducted a nested case-control analysis using a database extracted from Taiwan's National Health Insurance Research Database. All medical conditions for each case and control were categorised using the International Classification of Diseases, 9th Revision classifications. ORs and 95% CIs for associations between MFS and malignancies were estimated using conditional logistic regression and adjusted for comorbidities. RESULTS Our analyses included 1 153 137 cancer cases and 1 153 137 propensity score-matched controls. Relative to other subjects, patients with MFS had a significantly higher risk of having a malignancy (adjusted OR 3.991) and hypertension (adjusted OR 1.964) and were significantly more likely to be men. Malignancies originating from the head and neck and the urinary tract were significantly more frequent among patients with MFS than among subjects without MFS. CONCLUSION Patients with MFS are at increased risk of developing various malignancies. Healthcare professionals should be aware of this risk when treating such patients, and increased cancer surveillance may be necessary for these patients.
Collapse
Affiliation(s)
- Chin-Wang Hsu
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association, Taoyuan, Taiwan
| | - Chang-Huei Tsao
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
19
|
Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, Kwon T, Jeong DK. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 2017; 8:66680-66698. [PMID: 29029547 PMCID: PMC5630447 DOI: 10.18632/oncotarget.19164] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
Curcumin is a natural polyphenol and essential curcuminoid derived from the rhizome of the medicinal plant Curcuma longa (L.) is universally acknowledged as “Wonder drug of life”. It is a vital consumable and restorative herb, commonly keened for several ailments such as cancer, arthritis, pain, bruises, gastrointestinal quandaries, swelling and much more. Despite its enormous curative potential, the poor aqueous solubility and consequently, minimal systemic bioavailability with rapid degradation are some of the major factors which restrict the utilization of curcumin at medical perspective. However, to improve its clinically relevant parameters, nanoformulation of curcumin is emerging as a novel substitute for their superior therapeutic modality. It enhances its aqueous solubility and targeted delivery to the tissue of interest that prompts to enhance the bioavailability, better drug conveyance, and more expeditious treatment. Subsequent investigations are endeavored to enhance the bio-distribution of native curcumin by modifying with felicitous nano-carriers for encapsulation. In this review, we specifically focus on the recent nanotechnology based implementations applied for overcoming the innate constraints of native curcumin and additionally the associated challenges which restrict its potential therapeutic applications both in vivo and in-vitro studies, as well as their detailed mechanism of action, have additionally been discussed.
Collapse
Affiliation(s)
- Meeta Gera
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmi University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Do Luong Huynh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Gangwon-do, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Taeho Kwon
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
20
|
Dasiram JD, Ganesan R, Kannan J, Kotteeswaran V, Sivalingam N. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells. Biomed Pharmacother 2017; 86:373-380. [DOI: 10.1016/j.biopha.2016.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
|
21
|
Ganesan R, Rasool M. Fibroblast-like synoviocytes-dependent effector molecules as a critical mediator for rheumatoid arthritis: Current status and future directions. Int Rev Immunol 2017; 36:20-30. [PMID: 28102734 DOI: 10.1080/08830185.2016.1269175] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic-autoimmune-mediated disease characterized by synovial hyperplasia and progressive destruction of joint. Currently available biological agents and inhibitor therapy that specifically target tumor necrosis factor-α, interleukin 1β (IL-1β), IL-6, T cells, B cells, and subcellular molecules (p38 mitogen-activated protein kinase and janus kinase) cannot facilitate complete remission in all patients and are unable to cure the disease. Therefore, further potent therapeutic targets need to be identified for effective treatment and successful clinical outcomes in patients with RA. Scientific breakthroughs have brought new insights regarding fibroblast-like synoviocytes (FLS), a major constituent of the synovial hyperplasia. These play a pivotal role in RA invading cartilage and bone tissue. Currently there are no effective therapies available that specifically target these aggressive cells. Recent evidences indicate that FLS-dependent effector molecules (toll-like receptors, nodal effector molecules, hypoxia-inducible factor, and IL-17) have emerged as important mediators of RA. In this review, we discuss the pathological features and recent advances in understanding the role of FLS-dependent effector molecules in the disease onset of RA. Pharmacological inhibition of FLS-dependent effector molecules might be a promising option for FLS-targeted therapy in RA.
Collapse
Affiliation(s)
- Ramamoorthi Ganesan
- a Immunopathology Lab, School of Biosciences and Technology, VIT University , Vellore , Tamilnadu , India
| | - Mahaboobkhan Rasool
- a Immunopathology Lab, School of Biosciences and Technology, VIT University , Vellore , Tamilnadu , India
| |
Collapse
|
22
|
Su F, Li X, You K, Chen M, Xiao J, Zhang Y, Ma J, Liu B. Expression of VEGF-D, SMAD4, and SMAD7 and Their Relationship with Lymphangiogenesis and Prognosis in Colon Cancer. J Gastrointest Surg 2016; 20:2074-2082. [PMID: 27730400 DOI: 10.1007/s11605-016-3294-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 01/31/2023]
Abstract
AIM The vascular endothelial growth factor (VEGF) and TGF-β1 pathways play important roles in cancer. However, few studies have evaluated the expression and roles of VEGF-D, SMAD4, and SMAD7 in colon cancer, and the conclusions remain controversial. To clarify the roles of VEGF-D, SMAD4, and SMAD7 in colon cancer, we examined their expression and evaluated correlations with lymphangiogenesis, prognosis, and chemotherapeutic outcome. METHODS The expression of VEGF-D, SMAD4, and SMAD7 was immunohistochemically examined in 251 primary colon cancer samples obtained from the Harbin Medical University. RESULTS The expression of VEGF-D, SMAD4, and SMAD7 was identified in 71.7, 41.0, and 69.7 % of samples, respectively. Positive expression of VEGF-D and SMAD7 and lost expression of SMAD4 were significantly correlated with lymph node metastasis and high lymphatic vessel density. VEGF-D and SMAD7 were found to be independent indicators of prognosis and chemotherapy outcome, and positive expression of either VEGF-D or SMAD7 was associated with significantly shorter overall survival and disease-free survival (OS and DFS) than negative expression in all 251 patients (P < 0.001 for OS and DFS) and patients following chemotherapy (P < 0.001 for OS and DFS). CONCLUSION VEGF-D, SMAD4, and SMAD7 were involved in lymphangiogenesis and lymph node metastasis. VEGF-D and SMAD7 can serve as predictors of prognosis and chemotherapeutic outcome in colon cancer.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xuemei Li
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Kai You
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Mingwei Chen
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Jianbing Xiao
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Jing Ma
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
23
|
|
24
|
Bigagli E, De Filippo C, Castagnini C, Toti S, Acquadro F, Giudici F, Fazi M, Dolara P, Messerini L, Tonelli F, Luceri C. DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 year follow-up. Cell Oncol (Dordr) 2016; 39:545-558. [PMID: 27709558 DOI: 10.1007/s13402-016-0299-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND DNA copy number alterations (CNAs) and gene expression changes have amply been encountered in colorectal cancers (CRCs), but the extent at which CNAs affect gene expression, as well as their relevance for tumor development, are still poorly defined. Here we aimed at assessing the clinical relevance of these parameters in a 10 year follow-up study. METHODS Tumors and normal adjacent colon mucosa, obtained at primary surgery from 21 CRC patients, were subjected to (i) high-resolution array CGH (a-CGH) for the detection of CNAs and (ii) microarray-based transcriptome profiling for the detection of gene expression (GE) changes. Correlations between these genomic and transcriptomic changes and their associations with clinical and histopathological parameters were assessed with the aim to identify molecular signatures associated with disease-free survival of the CRC patients during a 10 year follow-up. RESULTS DNA copy number gains were frequently detected in chromosomes 7, 8q, 13, 19, 20q and X, whereas DNA copy number losses were frequently detected in chromosomes 1p, 4, 8p, 15, 17p, 18, 19 and 22q. None of these alterations were observed in all samples. In addition, we found that 2,498 genes were up- and that 1,094 genes were down-regulated in the tumor samples compared to their corresponding normal mucosa (p < 0.01). The expression of 65 genes was found to be significantly associated with prognosis (p < 0.01). Specifically, we found that up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, were strongly associated with a poor survival. Subsequent integrated analyses revealed that increased expression levels of the MMP9, BMP7, UBE2C, I-CAM, NOTCH3, NOTCH1, PTGES2, HMGB1 and ERBB3 genes were associated with copy number gains, whereas decreased expression levels of the MUC1, E2F2, HRAS and SIRT3 genes were associated with copy number losses. Pathways related to cell cycle progression, eicosanoid metabolism, and TGF-β and apoptosis signaling, were found to be most significantly affected. CONCLUSIONS Our results suggest that CNAs in CRC tumor tissues are associated with concomitant changes in the expression of cancer-related genes. In other genes epigenetic mechanism may be at work. Up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, appear to be associated with a poor survival. These alterations may, in addition to Dukes' staging, be employed as new prognostic biomarkers for the prediction of clinical outcome in CRC patients.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - Carlotta De Filippo
- Institute of Biometeorology (IBIMET), National Research Council (CNR), Florence, Italy
| | - Cinzia Castagnini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | | | - Francesco Acquadro
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Francesco Giudici
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Marilena Fazi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Piero Dolara
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Tonelli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
25
|
Li S, Hang L, Ma Y, Wu C. Distinctive microRNA expression in early stage nasopharyngeal carcinoma patients. J Cell Mol Med 2016; 20:2259-2268. [PMID: 27489139 PMCID: PMC5134390 DOI: 10.1111/jcmm.12906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022] Open
Abstract
The goal of this study was to investigate microRNAs (miRs) expression at different stages of nasopharyngeal carcinoma (NPC). MiR expression profiling at various stages of NPC was performed by miR array and further verified using quantitative real-time RT-PCR. Pathway enrichment analysis was carried out to identify the functional pathways regulated by the miRs. The expression of a selected group of identified miRs was verified in stage I NPC by in situ hybridization (ISH). A total of 449 miRs were identified with significantly different expressions between NPC tissues and normal pharyngeal tissues. Eighty-four miRs were dysregulated only in stage I NPC, among which 45 miRs were up-regulated and the other 39 were down-regulated. Pathway enrichment assay revleaed that three significantly down-regulated and three significantly up-regulated miRs involved in 12 pathways associating with tumour formation and progression. Quantitative RT-PCR confirmed the miR array result. In addition, the low expression levels of hsa-miR-4324, hsa-miR-203a and hsa-miR-199b-5p were further validated in stage I NPC by ISH. This present study identifed the miR signature in stage I NPC, providing the basis for early detection and treatment of NPC.
Collapse
Affiliation(s)
- Shuna Li
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lihua Hang
- Department of Anesthesia, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongming Ma
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaoyang Wu
- Department of Radiation Oncology, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
26
|
Sahebkar A, Henrotin Y. Analgesic Efficacy and Safety of Curcuminoids in Clinical Practice: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PAIN MEDICINE (MALDEN, MASS.) 2016; 17:1192-1202. [PMID: 26814259 DOI: 10.1093/pm/pnv024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 09/05/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Curcuminoids are natural products with potent anti-inflammatory and antioxidant properties. There have been a number of reports on the analgesic effects of curcuminoids in clinical trials, yet data have not been fully conclusive. OBJECTIVES To provide the highest level of evidence on the efficacy of curcuminoids in patients with painful conditions through meta-analysis of data from randomized controlled trials (RCTs). METHODS A systematic review and meta-analysis was conducted using data reported by RCTs. The primary efficacy measure was pain intensity or algofunctional status. Treatment effect was summarized with standardized mean difference (SMD) calculated from differences in means of pain measures between treatment and control groups using a random-effects model. RESULTS A total of eight RCTs met our inclusion criteria that included 606 randomized patients. Curcuminoids were found to significantly reduce pain (SMD: -0.57, 95% CI: -1.11 to -0.03, P = 0.04). This pain-relieving effect was found to be independent of administered dose and duration of treatment with curcuminoids, and was free from publication bias. Curcuminoids were safe and well tolerated in all evaluated RCTs. CONCLUSION Curcuminoids supplements may be a safe and effective strategy to improve pain severity, by warranting further rigorously conducted studies to define the long-term efficacy and safety.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- *Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liege, University of Liege, Liege, Begium; Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
27
|
Shukla PK, Chaudhry KK, Mir H, Gangwar R, Yadav N, Manda B, Meena AS, Rao R. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer 2016; 16:189. [PMID: 26951793 PMCID: PMC4782373 DOI: 10.1186/s12885-016-2180-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
Background Alcohol consumption is one of the major risk factors for colorectal cancer. However, the mechanism involved in this effect of alcohol is unknown. Methods We evaluated the effect of chronic ethanol feeding on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in mouse colon. Inflammation in colonic mucosa was assessed at a precancerous stage by evaluating mucosal infiltration of neutrophils and macrophages, and analysis of cytokine and chemokine gene expression. Results Chronic ethanol feeding significantly increased the number and size of polyps in colon of AOM/DSS treated mice. Confocal microscopic and immunoblot analyses showed a significant elevation of phospho-Smad, VEGF and HIF1α in the colonic mucosa. RT-PCR analysis at a precancerous stage indicated that ethanol significantly increases the expression of cytokines IL-1α, IL-6 and TNFα, and the chemokines CCL5/RANTES, CXCL9/MIG and CXCL10/IP-10 in the colonic mucosa of AOM/DSS treated mice. Confocal microscopy showed that ethanol feeding induces a dramatic elevation of myeloperoxidase, Gr1 and CD68-positive cells in the colonic mucosa of AOM/DSS-treated mice. Ethanol feeding enhanced AOM/DSS-induced suppression of tight junction protein expression and elevated cell proliferation marker, Ki-67 in the colonic epithelium. Conclusion This study demonstrates that chronic ethanol feeding promotes colonic tumorigenesis potentially by enhancing inflammation and elevation of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Kamaljit K Chaudhry
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Hina Mir
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Nikki Yadav
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Avtar S Meena
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Ahmad R, Dhawan P, Singh AB. Cancer Stem Cell and Gastrointestinal Cancer: Current Status, Targeted Therapy and Future Implications. ACTA ACUST UNITED AC 2016; 5. [PMID: 31656694 PMCID: PMC6814166 DOI: 10.4172/2167-0501.1000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cancer stem cells (CSCs) are biologically distinct subset of rare cancer cells with inherent ability of self-renewal, de-differentiation, and capacity to initiate and maintain malignant tumor growth. Studies have further reported that CSCs prime cancer recurrence and therapy resistance. Therefore, targeting CSCs to inhibit cancer progression has become an attractive anti-cancer therapeutical strategy. Recent technical advances have provided a greater appreciation of the multistep nature of the oncogenesis and also clarified that CSC concept is not universally applicable. Irrespective, the role of the CSCs in gastrointestinal (GI) cancers, responsible for the most cancer-associated death, has been widely accepted and appreciated. However, despite the tremendous progress made in the last decade in developing markers to identify CSCs, and assays to assess tumorigenic function of CSCs, it remains an area of active investigation. In current article, we review findings related to the role and identification of CSCs in GI-cancers and discuss the crucial pathways involved in regulating CSCs populations’ development and drug resistance, and use of the tumoroid culture to test novel CSCs-targeted cancer therapies.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,VA Nebraska- Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,VA Nebraska- Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
29
|
Xu S, Chen M, Chen W, Hui J, Ji J, Hu S, Zhou J, Wang Y, Liang G. Chemopreventive effect of chalcone derivative, L2H17, in colon cancer development. BMC Cancer 2015; 15:870. [PMID: 26552551 PMCID: PMC4638100 DOI: 10.1186/s12885-015-1901-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Colon cancer is the third most commonly diagnosed cancer and the second leading cause of cancer mortality worldwide. Chalcone and its derivatives are reported to exhibit anti-cancer effects in several cancer cell lines, including colon cancer cells. In addition, chalcones have advantages such as poor interaction with DNA and low risk of mutagenesity. In our previous study, a group of chalcone derivatives were synthesized and exhibited strong anti-inflammatory activities. In this study, we evaluated the anti-cancer effects of the chalcone derivative, L2H17, in colon cancer cells. METHODS The cytotoxicities of L2H17 on various colon cancer cell lines were investigated by MTT and clonogenic assay. Cell cycle and apoptosis analysis were performed to evaluate the molecular mechanism of L2H17-mediated inhibition of tumor growth. Also, scratch wound and matrigel invasion experiments were performed to estimate the cell migration and invasion after L2H17 treatment. Finally, we observed the anti-colon cancer effects of L2H17 in vivo. RESULTS Our data show that compound L2H17 exhibited selective cytotoxic effect on colon cancer cells, via inducing G0/G1 cell cycle arrest and apoptosis in CT26.WT cells. Furthermore, L2H17 treatment decreased cell migration and invasion of CT26.WT cells. In addition, L2H17 possessed marked anti-tumor activity in vivo. The molecular mechanism of L2H17-mediated inhibition of tumor promotion and progression were function through inactivated NF-κB and Akt signaling pathways. CONCLUSIONS All these findings show that L2H17 might be a potential growth inhibitory chalcones derivative for colon cancer cells.
Collapse
Affiliation(s)
- Shanmei Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Minxiao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wenbo Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Junguo Hui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Department of Radiology, the 5th Affiliated Hospital, Wenzhou Medical University, Lishui, Zhejiang, China.
| | - Jiansong Ji
- Department of Radiology, the 5th Affiliated Hospital, Wenzhou Medical University, Lishui, Zhejiang, China.
| | - Shuping Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jianmin Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
30
|
Abstract
BACKGROUND Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. METHODS Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. RESULTS Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. CONCLUSIONS In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.
Collapse
|
31
|
Liu X, Ji Q, Fan Z, Li Q. Cellular signaling pathways implicated in metastasis of colorectal cancer and the associated targeted agents. Future Oncol 2015; 11:2911-22. [PMID: 26414153 DOI: 10.2217/fon.15.235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cancer worldwide and CRC-related death is mainly attributed to metastasis. Many cellular signaling pathways have been demonstrated to be aberrant in colorectal tumors, and some of them lead to the acquisition of malignant phenotypes. Therefore, the evaluation of signaling pathways implicated in CRC metastasis is urgent for further understanding of CRC progression and pharmacotherapy. This review focuses on several novel cellular signaling pathways associated with CRC metastasis, including Wnt/β-catenin, p53, COX, TGF-β/Smad, NF-κB, Notch, VEGF and JAKs/STAT3 signaling pathways. Targeted agents developed based on these pathways are also briefly discussed.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhongze Fan
- Interventional Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
32
|
Li L, Sun Y, Wu J, Li X, Luo M, Wang G. The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress Chaperones 2015; 20:381-9. [PMID: 25536930 PMCID: PMC4326376 DOI: 10.1007/s12192-014-0559-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022] Open
Abstract
Heat stress (HS) in hot climates is a major cause that strongly negatively affects milk yield in dairy cattle, leading to immeasurable economic loss. The heat stress response of bovine mammary epithelial cells (BMECs) is one component of the acute systemic response to HS. Gene networks of BMECs respond to environmental heat loads with both intra- and extracellular signals that coordinate cellular and whole-animal metabolism. Our experimental objective was to characterize the direct effects of heat stress on the cultured bovine mammary epithelial cells by microarray analyses. The data identified 2716 differentially expressed genes in 43,000 transcripts which were changed significantly between heat-stressed and normal bovine mammary epithelial cells (fold change ≥2, P ≤ 0.001). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these differentially expressed genes are involved in different pathways that regulate cytoskeleton, cell cycle, and stress response processes. Our study provides an overview of gene expression profile and the interaction between gene expression and heat stress, which will lead to further understanding of the potential effects of heat stress on bovine mammary glands.
Collapse
Affiliation(s)
- Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yu Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jie Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiaojuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Man Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
33
|
Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients 2015; 7:905-21. [PMID: 25647661 PMCID: PMC4344567 DOI: 10.3390/nu7020905] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 11/26/2022] Open
Abstract
Curcumin (CCM) is a well-known phytocompound and food component found in the spice turmeric and has multifunctional bioactivities. However, few studies have examined its effects on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effects of CCM supplementation on fatigue and ergogenic function following physical challenge in mice. Male ICR mice were divided into four groups to receive vehicle or CCM (180 μg/mL) by oral gavage at 0, 12.3, 24.6, or 61.5 mL/kg/day for four weeks. Exercise performance and anti-fatigue function were evaluated after physical challenge by forelimb grip strength, exhaustive swimming time, and levels of physical fatigue-associated biomarkers serum lactate, ammonia, blood urea nitrogen (BUN), and glucose and tissue damage markers such as aspartate transaminase (AST), alanine transaminase (ALT), and creatine kinase (CK). CCM supplementation dose-dependently increased grip strength and endurance performance and significantly decreased lactate, ammonia, BUN, AST, ALT, and CK levels after physical challenge. Muscular glycogen content, an important energy source for exercise, was significantly increased. CCM supplementation had few subchronic toxic effects. CCM supplementation may have a wide spectrum of bioactivities for promoting health, improving exercise performance and preventing fatigue.
Collapse
|
34
|
Abouzied MMM, Eltahir HM, Abdel Aziz MA, Ahmed NS, Abd El-Ghany AA, Abd El-Aziz EA, Abd El-Aziz HO. Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biol 2014; 36:1763-71. [PMID: 25519685 DOI: 10.1007/s13277-014-2778-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. In laboratory animal models, diethylnitrosamine (DENA) is a well-known agent that has a potent hepatocarcinogenic effect that is used to induce HCC. As curcumin has a potent anti-inflammatory effect with strong therapeutic potential against a variety of cancers, our present study aims to investigate its curative effects and the possible mechanisms of action against DENA-induced HCC in male rats. Investigation of biochemical and molecular parameters of HCC animal model liver showed an overexpression of TGF-β and Akt proteins accompanied with a significant reduction of the proapoptotic marker caspase-3. DENA-induced hepatic cellular injury resulted also in a significant increase in liver function marker enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lipid peroxides in this group. Curcumin treatment partially reversed DENA-induced damage as it reduced the overexpression of the angiogenic and anti-apoptotic factors TGF-β and Akt and improved caspase-3 expression. Also, it could partially normalize the serum values of liver marker enzymes and lipid peroxidation and improve liver architecture. Curcumin shows a unique chemotherapeutic effect in reversing DENA-induced HCC in rat model. This effect is possibly mediated through its proapoptotic, antioxidant, anti-angiogenic, as well as antimitotic effects. It interferes and modulates cell signaling pathways and hence turns death signals and apoptosis on within tumor cells.
Collapse
Affiliation(s)
- Mekky M M Abouzied
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El- Madinah El-Munawarah, P.O. Box 30001, Saudi Arabia,
| | | | | | | | | | | | | |
Collapse
|
35
|
Fu DS, Wen B, Zhang LH, Li RL. TGF-β1 influences polarity characteristics of epithelial cells during process of culture of colon tissues from neonatal rats in vitro. Shijie Huaren Xiaohua Zazhi 2014; 22:4386-4392. [DOI: 10.11569/wcjd.v22.i29.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a neonatal rat colon tissue culture system and to analyze the effect of transforming growth factor-β1 (TGF-β1) on polarity characteristics of epithelial cells.
METHODS: Forty-eight hours after 10 ng/mL TGF-β1 was added during the process of culture of colon tissues from neonatal rats, the expression changes of Crumbs3, E-cadherin and alpha smooth muscle actin (α-SMA) in the control group (without TGF-β1) and intervention group (with TGF-β1) were detected by IHC and RT-PCR.
RESULTS: Pavement-like cells could be seen around tissues in the control group after 48 h; Crumbs3 was mainly located at the apical membrane of epithelial cells (P < 0.01); a single layer of α-SMA-positive myofibroblasts along the crypt axis was visible, and α-SMA was lowly expressed in the smooth muscle. However, cells in the intervention group showed different morphology and size; E-cadherin was mainly present in the cytoplasm, and E-cadherin expression was lower than that in the control group (P < 0.05); α-SMA was abundantly expressed in activated fibroblasts (P < 0.01). The mRNA expression of E-cadherin and Crumbs3 in the control group was significantly lower than that in the intervention group (P < 0.05), while the mRNA expression of α-SMA in the intervention group was significantly higher than that in the control group (P < 0.01).
CONCLUSION: TGF-β1 induced down-regulation of Crumbs3 and then dramatically changed the phenotype of epithelial cells.
Collapse
|
36
|
Tsai ML, Chiou YS, Chiou LY, Ho CT, Pan MH. Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Mol Nutr Food Res 2014; 58:1820-9. [PMID: 24981158 DOI: 10.1002/mnfr.201400149] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 01/04/2023]
Abstract
SCOPE Garcinol is a polyisoprenylated benzophenone derivative isolated from the fruit rind of Garcinia indica and has exhibited chemopreventive effects on azoxymethane)-induced colonic aberrant crypt foci in mice. In this study, we investigated whether garcinol protects against dextran sulfate sodium (DSS) induced colitis/inflammation and azoxymethane/DSS-induced inflammation-related colon tumorigenesis in male ICR mice. We also aimed to delineate the possible molecular mechanisms responsible for these effects. METHODS AND RESULTS Treatment with garcinol prevented shortening of the colon length and the formation of aberrant crypt foci and improved the inflammation score in the mouse colon stimulated by DSS. Moreover, administration of garcinol markedly decreased DSS-induced inducible nitric oxide synthase, cyclooxygenase-2, and proliferating cell nuclear antigen protein expression. The dietary administration of garcinol effectively reduced the tumor size and incidence in the mouse colon. Western blot and immunohistochemical analysis revealed that administration of garcinol significantly downregulated cyclooxygenase-2, cyclin D1, and vascular endothelial growth factor expression via inhibition of the extracellular signal-regulated protein kinase 1/2, phosphatidylinositol 3 kinase/Akt/p70 ribosomal S6 kinase, and Wnt/β-catenin signaling pathways. CONCLUSION Our results suggest that garcinol may merit further clinical investigation as a chemoprophylactic food that helps prevent colitis-associated colon cancer.
Collapse
Affiliation(s)
- Mei-Ling Tsai
- Department of Food Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|