1
|
Holthaus D, Rogmans C, Gursinski I, Quevedo-Olmos A, Ehsani M, Mangler M, Flörkemeier I, Weimer JP, Meyer TF, Maass N, Bauerschlag DO, Hedemann N. Inhibition of ADAM17 increases the cytotoxic effect of cisplatin in cervical spheroids and organoids. Front Oncol 2024; 14:1432239. [PMID: 39286024 PMCID: PMC11402614 DOI: 10.3389/fonc.2024.1432239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Cervical cancer represents one of the main causes of female, cancer-related mortality worldwide. The majority of cancers are caused by human papillomaviruses such as HPV16 and HPV18. As chemotherapeutic resistance to first-line platinum treatment is still a predominant clinical challenge in advanced cervical cancer, novel treatment options including combinatorial therapies are urgently required to overcome chemotherapeutic resistance. Inhibition of A Disintegrin And Metalloproteinase (ADAM)-family members, heavily involved in tumour progression of a vast range of solid tumours, strongly improved response to chemotherapeutic treatment in other tumour entities including ovarian cancer. Methods We established two- and three-dimensional models derived from three traditional cervical cancer cell lines and ectocervical cancer-derived organoids. Following characterisation, these models were used to investigate their response to cisplatin treatment in the absence and presence of ADAM inhibitors using viability assays and automated live cell imaging. Results The pivotal role of the metalloprotease ADAM17 driving chemotherapy resistance was detectable in all ectocervical cultures irrespective of the model system used, whereas ADAM10 inhibition was predominantly effective only in loosely aggregated spheroids. We showed prominent differences regarding treatment responses between 2D monolayers compared to 3D spheroid and 3D organoid model systems. Particularly, the organoid system, regarded as the closest representation of primary tumours, exhibited reliably the combinatorial effect of ADAM17 inhibition and cisplatin in all three individual donors. Discussion As two- and three-dimensional models of the same cell lines differ in their responses to chemotherapy it is essential to validate treatment strategies in more advanced model systems representing the patient situation more realistically. Ectocervical organoids showed reliable results regarding treatment responses closely mimicking the primary tumours and could therefore serve as an important tool for personalized medicine in cervical cancer. These findings strengthen the role of ADAM17 as a potential novel target for combinatorial treatments to overcome chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- David Holthaus
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Rogmans
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ina Gursinski
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alvaro Quevedo-Olmos
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marzieh Ehsani
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mandy Mangler
- Department of Gynaecology and Obstetrics, Vivantes Auguste Viktoria-Klinikum, Berlin, Germany
- Department of Gynaecology, Charité University Medicine, Berlin, Germany
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jörg P Weimer
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinic and Polyclinic for Gynaecology and Reproductive Medicine, University Hospital Jena, Jena, Germany
| | - Nina Hedemann
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
2
|
Bouchareb E, Dallel S, De Haze A, Damon-Soubeyrand C, Renaud Y, Baabdaty E, Vialat M, Fabre J, Pouchin P, De Joussineau C, Degoul F, Sanmukh S, Gendronneau J, Sanchez P, Gonthier-Gueret C, Trousson A, Morel L, Lobaccaro JM, Kocer A, Baron S. Liver X Receptors Enhance Epithelial to Mesenchymal Transition in Metastatic Prostate Cancer Cells. Cancers (Basel) 2024; 16:2776. [PMID: 39199549 PMCID: PMC11353074 DOI: 10.3390/cancers16162776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Metastasis is the leading cause of death in prostate cancer patients. One of the crucial processes involved in metastatic spread is the "epithelial-mesenchymal transition" (EMT), which allows cells to acquire the ability to invade distant organs. Liver X Receptors (LXRs) are nuclear receptors that have been demonstrated to regulate EMT in various cancers, including hepatic cancer. Our study reveals that the LXR pathway can control pro-invasive cell capacities through EMT in prostate cancer, employing ex vivo and in vivo approaches. We characterized the EMT status of the commonly used LNCaP, DU145, and PC3 prostate cancer cell lines through molecular and immunohistochemistry experiments. The impact of LXR activation on EMT function was also assessed by analyzing the migration and invasion of these cell lines in the absence or presence of an LXR agonist. Using in vivo experiments involving NSG-immunodeficient mice xenografted with PC3-GFP cells, we were able to study metastatic spread and the effect of LXRs on this process. LXR activation led to an increase in the accumulation of Vimentin and Amphiregulin in PC3. Furthermore, the migration of PC3 cells significantly increased in the presence of the LXR agonist, correlating with an upregulation of EMT. Interestingly, LXR activation significantly increased metastatic spread in an NSG mouse model. Overall, this work identifies a promoting effect of LXRs on EMT in the PC3 model of advanced prostate cancer.
Collapse
Affiliation(s)
- Erwan Bouchareb
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Sarah Dallel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
- Service d’Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, 63003 Clermont-Ferrand, France
| | - Angélique De Haze
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Yoan Renaud
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Elissa Baabdaty
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Marine Vialat
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Julien Fabre
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Pierre Pouchin
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Cyrille De Joussineau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Françoise Degoul
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Swapnil Sanmukh
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Juliette Gendronneau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Phelipe Sanchez
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Céline Gonthier-Gueret
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Amalia Trousson
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Laurent Morel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Jean Marc Lobaccaro
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Ayhan Kocer
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Silvère Baron
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| |
Collapse
|
3
|
Song LM, Yao DJ, Xia L, Wang XM, Liu T, Tang QQ, Zhou J. DSG2 and c-MYC Interact to Regulate the Expression of ADAM17 and Promote the Development of Cervical Cancer. Cancer Manag Res 2024; 16:703-710. [PMID: 38948682 PMCID: PMC11214561 DOI: 10.2147/cmar.s456548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose To explore the effect of DSG2 on the growth of cervical cancer cells and its possible regulatory mechanism. Methods The expression levels and survival prognosis of DSG2 and ADAM17 in cervical squamous cell carcinoma tissues and adjacent normal tissues were analyzed by bioinformatics. CCK-8 assay, colony formation assay and Transwell assay were used to detect the effects of DSG2 on the proliferative activity, colony formation ability and migration ability of SiHa and Hela cells. The effect of DSG 2 on the level of ADAM17 transcription and translation was detected by qPCR and Western blot experiments. The interaction between DSG2 and c-MYC was detected by immunocoprecipitation. c-MYC inhibitors were used in HeLa cells overexpressing DSG2 to analyze the effects of DSG2 and c-MYC on proliferation, colony formation and migration of Hela cells, as well as the regulation of ADAM17 expression. Results DSG2 was highly expressed in cervical squamous cell carcinoma compared with normal tissues (P<0.05), and high DSG2 expression suggested poor overall survival (P<0.05). After DSG2 knockdown, the proliferative activity, colony formation and migration ability of SiHa and Hela cells were significantly decreased (P<0.05). Compared with adjacent normal tissues, ADAM17 was highly expressed in cervical squamous cell carcinoma (P<0.05), and high ADAM17 expression suggested poor overall survival in cervical cancer patients (P<0.05). The results of immunocoprecipitation showed the interaction between DSG2 and c-MYC. Compared with DSG2 overexpression group, DSG2 overexpression combined with c-MYC inhibition group significantly decreased cell proliferation, migration and ADAM17 expression (P < 0.05). Conclusion DSG2 is highly expressed in cervical cancer, and inhibition of DSG2 expression can reduce the proliferation and migration ability of cervical cancer cells, which may be related to the regulation of ADAM17 expression through c-MYC interaction.
Collapse
Affiliation(s)
- Li-Mian Song
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Du-Juan Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lin Xia
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xu-Ming Wang
- Department of Pathology, Affiliated Hospital of Guilin Medical College, Guilin, People’s Republic of China
| | - Tian Liu
- Department of Pathology, Affiliated Hospital of Guilin Medical College, Guilin, People’s Republic of China
| | - Qian-Qian Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jun Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Padežnik T, Oleksy A, Cokan A, Takač I, Sobočan M. Changes in the Extracellular Matrix in Endometrial and Cervical Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065463. [PMID: 36982551 PMCID: PMC10052846 DOI: 10.3390/ijms24065463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Endometrial and cervical cancers are the two most common gynaecological malignancies and among the leading causes of death worldwide. The extracellular matrix (ECM) is an important component of the cellular microenvironment and plays an important role in developing and regulating normal tissues and homeostasis. The pathological dynamics of the ECM contribute to several different processes such as endometriosis, infertility, cancer, and metastasis. Identifying changes in components of ECM is crucial for understanding the mechanisms of cancer development and its progression. We performed a systematic analysis of publications on the topic of changes in the extracellular matrix in cervical and endometrial cancer. The findings of this systematic review show that matrix metalloproteinases (MMP) play an important role impacting tumour growth in both types of cancer. MMPs degrade various specific substrates (collagen, elastin, fibronectin, aggrecan, fibulin, laminin, tenascin, vitronectin, versican, nidogen) and play a crucial role in the basal membrane degradation and ECM components. Similar types of MMPs were found to be increased in both cancers, namely, MMP-1, MMP-2, MMP-9, and MMP-11. Elevated concentrations of MMP-2 and MMP-9 were correlated with the FIGO stage and are associated with poor prognosis in endometrial cancer, whereas in cervical cancer, elevated concentrations of MMP-9 have been associated with a better outcome. Elevated ADAMTS levels were found in cervical cancer tissues. Elevated disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) levels were also found in endometrial cancer, but their role is still unclear. Following these findings, this review reports on tissue inhibitors of ECM enzymes, MMPs, and ADAMTS. The present review demonstrates changes in the extracellular matrix in cervical and endometrial cancers and compared their effect on cancer development, progression, and patient prognosis.
Collapse
Affiliation(s)
- Tjaša Padežnik
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Anja Oleksy
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Andrej Cokan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Iztok Takač
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Monika Sobočan
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
- Department for Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
5
|
Fabbi M, Costa D, Russo D, Arenare L, Gaggero G, Signoriello S, Scambia G, Pisano C, Colombo N, Losito NS, Filaci G, Spina A, Califano D, Scognamiglio G, Gadducci A, Mezzanzanica D, Bagnoli M, Ferrini S, Canzonieri V, Chiodini P, Perrone F, Pignata S. Analysis of A Disintegrin and Metalloprotease 17 (ADAM17) Expression as a Prognostic Marker in Ovarian Cancer Patients Undergoing First-Line Treatment Plus Bevacizumab. Diagnostics (Basel) 2022; 12:diagnostics12092118. [PMID: 36140519 PMCID: PMC9498026 DOI: 10.3390/diagnostics12092118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
To find prognostic factors for advanced ovarian cancer patients undergoing first-line therapy with carboplatin, paclitaxel and bevacizumab, we investigated the expression of a disintegrin and metalloprotease 17 (ADAM17) in cancer tissues. ADAM17 has been involved in ovarian cancer development, progression and cell resistance to cisplatin. Tissue microarrays from 309 ovarian cancer patients enrolled in the MITO16A/MANGO-OV2 clinical trial were analyzed by immunohistochemistry for ADAM17 protein expression. Intensity and extent of staining were combined into a semi-quantitative visual grading system (H score) which was related to clinicopathological characteristics of cases and the clinical outcome of patients by univariate and multivariate Cox regression models. ADAM17 immunostaining was detected in most samples, mainly localized in the tumor cells, with variable intensity across the cohort. Kaplan–Meier survival curves, generated according to the best cut-off value for the ADAM17 H score, showed that high ADAM17 expression was associated with worse prognosis for PFS and OS. However, after the application of a shrinkage procedure to adjust for overfitting hazard ratio estimates, the ADAM17 value as prognostic factor was lost. As subgroup analysis suggested that ADAM17 expression could be prognostically relevant in cases with no residual disease at baseline, further studies in this patient category may be worth planning.
Collapse
Affiliation(s)
- Marina Fabbi
- UO Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Delfina Costa
- UO Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Gabriele Gaggero
- UO Anatomia Patologica Ospedaliera, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Simona Signoriello
- Department of Mental Health and Public Medicine, Section of Statistics, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Giovanni Scambia
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Carmela Pisano
- Urogynecological Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicoletta Colombo
- European Institute of Oncology IRCCS, University of Milan-Bicocca, 20126 Milan, Italy
| | - Nunzia Simona Losito
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Gilberto Filaci
- UO Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Anna Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Daniela Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, 56127 Pisa, Italy
| | - Delia Mezzanzanica
- Molecular Therapies Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Marina Bagnoli
- Molecular Therapies Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Silvano Ferrini
- UO Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Sandro Pignata
- Urogynecological Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
6
|
Zhou C, Chen F, Li L. A Disintegrin and Metalloprotease 17 (ADAM17)-Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Enhance Drug-Resistant Cervical Cancer Development. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ADAM-17 is a type I transmembrane protein, and its abnormal expression affects the body development and tumor growth. BMSCs act as a target gene carrier in tumor tissues. This study mainly aims to explore the role of ADAM-17 and BMSCs in drug-resistant cervical cancer (CC). BMSCs were
transfected with ADAM-17 or empty vectors and then co-cultured with cisplatin-resistant CC cells followed by analysis of cell morphology. The in vivo effect of ADAM-17-modified BMSC was evaluated using animal model of CC. The protein expression of ADAM-17, EGFR, PI3K, and Akt was detected
using Western blot and RT-qPCR. Transfection of ADAM-17 significantly facilitated tumor growth at different time points (4 d, 7 d, 10 d, 14 d), accompanied with the upregulation of ADAM-17, EGFR, PI3K, and Akt expression (p < 0.05) without differences between empty vector group and
blank group (p > 0.05). Mechanistically, ADAM-17 directly targets EGFR in CC. In conclusion, ADAM-17-modified BMSC enhances the growth of drug-resistant CC cell and tumor growth through EGFR/PI3K/Akt signaling pathway, which may contribute to a novel therapy for treating CC.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Obstetrics and Gynecology, Union Jiangnan Hospital, Wuhan, Hubei, 430200, China
| | - Fengxia Chen
- Department of Obstetrics and Gynecology, Union Jiangnan Hospital, Wuhan, Hubei, 430200, China
| | - Liling Li
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, China
| |
Collapse
|
7
|
Kontio J, Soñora VR, Pesola V, Lamba R, Dittmann A, Navarro AD, Koivunen J, Pihlajaniemi T, Izzi V. Analysis of extracellular matrix network dynamics in cancer using the MatriNet database. Matrix Biol 2022; 110:141-150. [DOI: 10.1016/j.matbio.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
8
|
Garrido MP, Vallejos C, Girardi S, Gabler F, Selman A, López F, Vega M, Romero C. NGF/TRKA Promotes ADAM17-Dependent Cleavage of P75 in Ovarian Cells: Elucidating a Pro-Tumoral Mechanism. Int J Mol Sci 2022; 23:ijms23042124. [PMID: 35216240 PMCID: PMC8877415 DOI: 10.3390/ijms23042124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Nerve growth factor (NGF) and its high-affinity receptor TRKA are overexpressed in epithelial ovarian cancer (EOC) displaying a crucial role in the disease progression. Otherwise, NGF interacts with its low-affinity receptor P75, activating pro-apoptotic pathways. In neurons, P75 could be cleaved by metalloproteinases (α and γ-secretases), leading to a decrease in P75 signaling. Therefore, this study aimed to evaluate whether the shedding of P75 occurs in EOC cells and whether NGF/TRKA could promote the cleavage of the P75 receptor. The immunodetection of the α-secretase, ADAM17, TRKA, P75, and P75 fragments was assessed by immunohisto/cytochemistry and Western blot in biopsies and ovarian cell lines. The TRKA and secretases' inhibition was performed using specific inhibitors. The results show that P75 immunodetection decreased during EOC progression and was negatively correlated with the presence of TRKA in EOC biopsies. NGF/TRKA increases ADAM17 levels and the fragments of P75 in ovarian cells. This effect is abolished when cells are previously treated with ADAM17, γ-secretase, and TRKA inhibitors. These results indicate that NGF/TRKA promotes the shedding of P75, involving the activation of secretases such as ADAM17. Since ADAM17 has been proposed as a screening marker for early detection of EOC, our results contribute to understanding better the role of ADAM17 and NGF/TRKA in EOC pathogenesis, which includes the NGF/TRKA-mediated cleavage of P75.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Christopher Vallejos
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Silvanna Girardi
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Fernando Gabler
- Departamento de Patología, Escuela de Medicina, Hospital San Borja Arriarán, Universidad de Chile, Santiago 8360160, Chile;
| | - Alberto Selman
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Instituto Nacional del Cáncer, Santiago 8380455, Chile
| | - Fernanda López
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (C.V.); (S.G.); (F.L.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Correspondence:
| |
Collapse
|
9
|
Begum Y, Pandit A, Swarnakar S. Insights Into the Regulation of Gynecological Inflammation-Mediated Malignancy by Metalloproteinases. Front Cell Dev Biol 2021; 9:780510. [PMID: 34912809 PMCID: PMC8667270 DOI: 10.3389/fcell.2021.780510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/12/2021] [Indexed: 12/09/2022] Open
Abstract
Gynecological illness accounts for around 4.5% of the global disease burden, which is higher than other key global health concerns such as malaria (1.04%), TB (1.9%), ischemic heart disease (2.2%), and maternal disorders (3.5%). Gynecological conditions in women of reproductive age are linked to both in terms of diagnosis and treatment, especially in low-income economies, which poses a serious social problem. A greater understanding of health promotion and illness management can help to prevent diseases in gynecology. Due to the lack of established biomarkers, the identification of gynecological diseases, including malignancies, has proven to be challenging in most situations, and histological exams remain the gold standard. Metalloproteinases (MMPs, ADAMs, ADAMTSs) and their endogenous inhibitors (TIMPs) modulate the protease-dependent bioavailability of local niche components (e.g., growth factors), matrix turnover, and cellular interactions to govern specific physical and biochemical characteristics of the environment. Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM), and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that contribute significantly to the disintegration of extracellular matrix proteins and shedding of membrane-bound receptor molecules in several diseases, including arthritis. MMPs are noteworthy genes associated with cancer development, functional angiogenesis, invasion, metastasis, and immune surveillance evasion. These genes are often elevated in cancer and multiple benign gynecological disorders like endometriosis, according to research. Migration through the extracellular matrix, which involves proteolytic activity, is an essential step in tumor cell extravasation and metastasis. However, none of the MMPs’ expression patterns, as well as their diagnostic and prognostic potential, have been studied in a pan-cancer context. The latter plays a very important role in cell signaling and might be used as a cancer treatment target. ADAMs are implicated in tumor cell proliferation, angiogenesis, and metastasis. This review will focus on the contribution of the aforementioned metalloproteinases in regulating gynecological disorders and their subsequent manipulation for therapeutic intervention.
Collapse
Affiliation(s)
- Yasmin Begum
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anuradha Pandit
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
10
|
NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells 2021; 10:cells10113104. [PMID: 34831327 PMCID: PMC8619016 DOI: 10.3390/cells10113104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynaecological malignancies worldwide and is related to human papillomavirus (HPV) infection, viral persistence, progression, and invasion. Therefore, the immune response is linked to HPV status. Natural killer (NK) cells play a central role against virus-infected cells and tumours through a delicate balance between activating and inhibitory receptors and secretion of cytokines and chemokines. These cells also play a crucial role in tumour immunosurveillance. For these reasons, there is growing interest in harnessing NK cells as an immunotherapy for cervical cancer. These studies are diverse and include many strategies such as transferring activated autologous or allogeneic NK cells, improving the activation and cytolytic activity of NK cells using cytokines or analogues and modifying chimeric antigen receptors to increase specificity and targeting NK cells. However, research regarding the application of NK cells in immunotherapy is limited. This article focuses on recent discoveries about using NK cells to prevent and treat cervical cancer and the possibility of cellular immunotherapy becoming one of the best strategies to exploit the immune system to fight tumours.
Collapse
|
11
|
Chen W, Huang S, Shi K, Yi L, Liu Y, Liu W. Prognostic Role of Matrix Metalloproteinases in Cervical Cancer: A Meta-Analysis. Cancer Control 2021; 28:10732748211033743. [PMID: 34482737 PMCID: PMC8424604 DOI: 10.1177/10732748211033743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Studies have published the association between the expression of matrix metalloproteinases (MMPs) and the outcome of cervical cancer. However, the prognostic value in cervical cancer remains controversial. This meta-analysis was conducted to evaluate the prognostic functions of MMP expression in cervical cancer. METHODS A comprehensive search of PubMed, Embase, and Web of Science databases was conducted to identify the eligible studies according to defined selection and excluding criteria and analyzed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Fixed and random effects models were evaluated through the hazard ratios (HRs) and 95% confidence intervals (CIs) to estimate the overall survival (OS), recurrence-free survival (RFS), and progress-free survival (PFS). RESULTS A total of 18 eligible studies including 1967 patients were analyzed for prognostic value. Totally 16 selected studies including 21 tests were relevant to the cervical cancer OS, 4 studies focused on RFS, and 1 study on PFS. The combined pooled HRs and 95% CIs of OS were calculated with random-effects models (HR = 1.64, 95% CI = 1.01-2.65, P = .000). In the subgroup analysis for OS, there was no heterogeneity in MMP-2 (I2 = .0%, P = .880), MMP-1 (I2 = .0%, P = .587), and MMP-14 (I2 = 28.3%, P = .248). In MMP-7 and MMP-9, the heterogeneities were obvious (I2 = 99.2% (P = .000) and I2 = 77.9% (P = .000), respectively). The pooled HRs and 95% CIs of RFS were calculated with fixed-effects models (HR = 2.22, 95% CI = 1.38-3.58, P = .001) and PFS (HR = 2.29, 95% CI = 1.14-4.58, P = .035). CONCLUSIONS The results indicated that MMP overexpression was associated with shorter OS and RFS in cervical cancer patients. It suggested that MMP overexpression might be a poor prognostic marker in cervical cancer. Research Registry Registration Number: reviewregistry 1159.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Shenjiao Huang
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Kun Shi
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Lisha Yi
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Yaqiong Liu
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Wenjie Liu
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| |
Collapse
|
12
|
DeSantis-Rodrigues A, Hahn RA, Zhou P, Babin M, Svoboda KK, Chang YC, Gerecke DR, Gordon MK. SM1997 downregulates mustard-induced enzymes that disrupt corneal epithelial attachment. Anat Rec (Hoboken) 2021; 304:1974-1983. [PMID: 33554453 PMCID: PMC11236088 DOI: 10.1002/ar.24597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/21/2020] [Accepted: 01/14/2021] [Indexed: 11/08/2022]
Abstract
Amino-Plex (SM1997) is a spray or liquid cosmeceutical that has been used for skin dryness, aging, or sun exposure. Its formulation includes electrolytes, trace minerals, amino acids, peptides, nucleosides and nucleotides, all substances that are <10 kDa. It is designed to increase oxygen levels in cells, improve glucose transport, stimulate ATP synthesis, and stimulate collagen formation, actions that can help facilitate repair of damaged cells. It also supports collagen synthesis and formation of healthy granulation tissue, accelerating reepithelization of damaged skin. Here, SM1997 has been tested as an agent to improve the healing of mustard injury to the cornea. The results indicate that SM1997 facilitates the retention of corneal epithelial attachment when applied to corneal organ cultures after nitrogen mustard exposure. In addition, it reduces the activation of enzymes that lead to epithelial-stromal separation, namely, ADAM17 and MMP-9. Therefore, SM1997 should be further investigated as a potential therapy sulfur mustard and nitrogen mustard exposure.
Collapse
Affiliation(s)
- Andrea DeSantis-Rodrigues
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Rita A. Hahn
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Michael Babin
- Medical Research and Evaluation Facility, Battelle Biomedical Research Center, West Jefferson, Ohio
| | - Kathy K.H. Svoboda
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas
| | - Yoke-Chen Chang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Donald R. Gerecke
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Marion K. Gordon
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
13
|
Zhou Y, Heitmann JS, Kropp KN, Hinterleitner M, Koch A, Hartkopf AD, Salih HR, Hinterleitner C, Maurer S. Regulation of Platelet-Derived ADAM17: A Biomarker Approach for Breast Cancer? Diagnostics (Basel) 2021; 11:diagnostics11071188. [PMID: 34208863 PMCID: PMC8305148 DOI: 10.3390/diagnostics11071188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor progression and metastasis are critically dependent on the tumor microenvironment. A disintegrin and metalloproteinase 17 (ADAM17) is associated with shedding of several substrates involved in tumor progression and known to be expressed by platelets of healthy donors and patients with solid tumors. Here, we report that platelet-derived ADAM17 (pADAM17) is regulated upon platelet activation of breast cancer patients, but not of healthy individuals. The observed downregulation of pADAM17 on platelets of cancer patients correlated with clinical parameters related to tumor progression including tumor stage and the occurrence of metastasis. Our data identify an association between platelet activation, modulation of platelet-derived ADAM17, and metastasis. In conclusion, we demonstrate that further development of pADAM17 as a liquid biomarker is warranted for monitoring disease progression in breast cancer.
Collapse
Affiliation(s)
- Yanjun Zhou
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Jonas S. Heitmann
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Korbinian N. Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, 55131 Mainz, Germany;
| | - Martina Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.K.); (A.D.H.)
| | - Andreas D. Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.K.); (A.D.H.)
| | - Helmut R. Salih
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Clemens Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
- Correspondence:
| | - Stefanie Maurer
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany; (Y.Z.); (J.S.H.); (M.H.); (H.R.S.); (S.M.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Identification of novel substrates of a disintegrin and metalloprotease 17 by specific labeling of surface proteins. Heliyon 2021; 6:e05804. [PMID: 33385093 PMCID: PMC7770542 DOI: 10.1016/j.heliyon.2020.e05804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
A disintegrin and metalloprotease 17 (ADAM17) catalyzes the cleavage and release of the ectodomains of its substrates at the cell surface in a process termed ectodomain shedding. However, not all ADAM17 substrates have been identified. Here, we used cell surface protein-specific labeling and proteomic approaches to detect and identify ADAM17 substrates. HeLa cell surface proteins were labeled with a fluorescent dye and cultured with or without TAPI-2, an ADAM17 inhibitor. Labeled proteins released into the culture medium were detected by 2-dimensional gel electrophoresis (2DE). Protein spots showing decreased intensity in response to TAPI-2 were selected as substrates of ADAM17 or their binding proteins, and identified by mass spectrometry. ADAM17 knockdown was preformed to examine the behavior of identified proteins. Of 347 proteins detected by 2DE, 49 showed lower intensity in TAPI-2 (+) than in TAPI-2 (-) samples (p < 0.05), and were considered as candidate substrates of ADAM17. Mass spectrometric analysis of 14 protein spots showing >50% decreased intensity identified clusterin as a novel ADAM17 substrate, in addition to known substrates such as desmoglein-2. Western blot analysis showed that ADAM17 knockdown decreased the levels of clusterin fragments cleaved and released from the cell surface. The results identified clusterin as a novel ADAM17 substrate. The method used to identify clusterin could be used to identify the substrates of other sheddases involved in ectodomain shedding.
Collapse
|
15
|
Xu D, Dong P, Xiong Y, Yue J, Konno Y, Ihira K, Kobayashi N, Todo Y, Watari H. MicroRNA-361-Mediated Inhibition of HSP90 Expression and EMT in Cervical Cancer Is Counteracted by Oncogenic lncRNA NEAT1. Cells 2020; 9:cells9030632. [PMID: 32151082 PMCID: PMC7140536 DOI: 10.3390/cells9030632] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process contributing to cervical cancer (CC) metastasis, and microRNAs (miRNAs) modulate the expression of genes implicated in EMT. However, the accurate role of miR-361 in CC-associated EMT and the mechanisms underlying its function in CC remains largely unknown. The functional roles of miR-361 in CC cells were explored by a series of cell functional assays. Luciferase reporter assays were used to demonstrate the potential interaction between miR-361, HSP90, and long non-coding RNA (lncRNA) NEAT1. We detected a reduction of miR-361 expression in CC tissues compared with normal tissues, and miR-361 overexpression inhibited invasion and EMT phenotypes of CC cells by directly targeting a key EMT activator HSP90. Additionally, we detected significantly higher levels of HSP90 in CC tissues compared with normal tissues, and high expression of HSP90 predicted a poorer prognosis. We further identified NEAT1 as a significantly upregulated lncRNA in CC tissues and high expression of NEAT1 was associated with worse survival in CC patients. NEAT1 directly repressed miR-361 expression and played an oncogenic role in CC cell invasion and sphere formation. Conclusions: These results demonstrated that miR-361 directly targets HSP90 to inhibit the invasion and EMT features, and NEAT1 functions as an oncogenic lncRNA that suppresses miR-361 expression and induces EMT and sphere formation in CC cells, thus providing critical insights into the molecular pathways operating in this malignancy.
Collapse
Affiliation(s)
- Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
- Correspondence: (P.D.); (H.W.); Tel.: +81-11-706-5941 (P.D.)
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510275, China;
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Yukiharu Todo
- Division of Gynecologic Oncology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 060-0042, Japan;
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
- Correspondence: (P.D.); (H.W.); Tel.: +81-11-706-5941 (P.D.)
| |
Collapse
|
16
|
Xu Q, Chen C, Liu B, Lin Y, Zheng P, Zhou D, Xie Y, Lin Y, Guo C, Liu J, Li L. Association of iRhom1 and iRhom2 expression with prognosis in patients with cervical cancer and possible signaling pathways. Oncol Rep 2019; 43:41-54. [PMID: 31661139 PMCID: PMC6908940 DOI: 10.3892/or.2019.7389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Several proteins in the iRhom family function as oncogenic regulators in certain cancers. However, the function of these proteins in cervical cancer (CC) is unknown. The relationship of iRhom1 and iRhom2 expression with the clinicopathological features and prognosis of patients with CC was investigated, and their possible molecular mechanisms were examined using in vitro experiments. The expression of iRhom1 and iRhom2 in CC samples of 83 patients was determined by immunohistochemistry (IHC), and the associations of their expression with the clinicopathological features of patients were determined. The relationship of iRhom1, iRhom2, and Ki-67 expression with survival rates was determined using Kaplan-Meier analysis and Cox regression analyses. HeLa cells were analyzed using MTT assays, cell cycle analysis, and apoptosis assays. The results revealed that CC tissues had higher levels of iRhom1 and iRhom2 than adjacent normal tissues. Increased expression of iRhom1, iRhom2, and K-i67 was significantly associated with tumor stage, size, and parametrium invasion. High expression of iRhom1, iRhom2 and Ki-67 was correlated with poor outcomes. Cancer stage and iRhom2 expression were independent prognostic indicators of CC. Knockdown of iRhom1 and iRhom2 in HeLa cells inhibited cell proliferation, promoted the G1 phase and relieved S-phase arrest, and induced apoptosis. Genomic microarray analysis indicated that iRhom2 knockdown altered several pathways with roles in oncogenesis, including the expression of five genes in the Wnt/β-catenin pathway. Western blotting in HeLa cells revealed that iRhom1 knockdown significantly suppressed the expression of β-catenin, Myc, p-EGFR and TGFBR2, and increased the expression of FAS; iRhom2 knockdown significantly suppressed the expression of β-catenin, GSK3β, p-EGFR and Myc. These results were consistent with the genomic microarray data. Collectively, the results indicated that iRhom1 and iRhom2 may function as oncogenes in CC and are potential therapeutic targets.
Collapse
Affiliation(s)
- Qin Xu
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Chuanben Chen
- Department of Oncology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Bin Liu
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Yibin Lin
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Peng Zheng
- Department of Oncology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Dongmei Zhou
- Department of Research Pathology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Yunqing Xie
- Department of Research Center, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Ya Lin
- Department of Oncology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Ciren Guo
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Jing Liu
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| | - Li Li
- Department of Gynecology, Fujian Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
17
|
Herbster S, Paladino A, de Freitas S, Boccardo E. Alterations in the expression and activity of extracellular matrix components in HPV-associated infections and diseases. Clinics (Sao Paulo) 2018; 73:e551s. [PMID: 30208169 PMCID: PMC6113921 DOI: 10.6061/clinics/2018/e551s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022] Open
Abstract
Infection with human papillomaviruses is associated with a series of benign and malignant hyperproliferative diseases that impose a heavy burden on human populations. A subgroup of mucosal human papillomavirus types are associated with the majority of cervical cancers and a relevant fraction of vulvar, vaginal, anal, penile and head and neck carcinomas. Human papillomaviruses mediate cell transformation by the expression of two pleiotropic oncoproteins that alter major cellular regulatory pathways. However, these viruses are not complete carcinogens, and further alterations within the infected cells and in their microenvironment are necessary for tumor establishment and progression. Alterations in components of the extracellular matrix for instance, matrix metalloproteinases and some of their regulators such as tissue inhibitors of metalloproteinases, have been consistently reported in human papillomaviruses-associated diseases. Matrix metalloproteinases function by remodeling the extracellular matrix and alterations in their expression levels and/or activity are associated with pathological processes and clinical variables including local tumor invasion, metastasis, tumor relapse and overall patient prognosis and survival. In this review we present a summarized discussion on the current data concerning the impact of human papillomavirus infection on the activity and expression of extracellular matrix components. We further comment on the possibility of targeting extracellular matrix molecules in experimental treatment protocols.
Collapse
Affiliation(s)
- Suellen Herbster
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andressa Paladino
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sumara de Freitas
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 2017; 6:e326. [PMID: 28459431 PMCID: PMC5525454 DOI: 10.1038/oncsis.2017.25] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Epithelial ovarian cancer is the most lethal gynecological cancer mainly due to late diagnosis, easy spreading and rapid development of chemoresistance. Cancer stem cells are considered to be one of the main mechanisms for chemoresistance, as well as metastasis and recurrent disease. To explore the stemness characteristics of ovarian cancer stem cells, we successfully enriched ovarian cancer stem-like cells from an established ovarian cancer cell line (SKOV-I6) and a fresh ovarian tumor-derived cell line (OVS1). These ovarian cancer stem-like cells possess important cancer stemness characteristics including sphere-forming and self-renewing abilities, expressing important ovarian cancer stem cell and epithelial–mesenchymal transition markers, as well as increased drug resistance and potent tumorigenicity. Microarray analysis of OVS1-derived sphere cells revealed increased expression of amphiregulin (AREG) and decreased expression of its conserved regulatory microRNA, miR-34c-5p, when compared with the OVS1 parental cells. Overexpression of AREG and decreased miR-34c-5p expression in SKOV-I6 and OVS1 sphere cells were confirmed by quantitative real-time PCR analysis. Luciferase reporter assay and mutant analysis confirmed that AREG is a direct target of miR-34c-5p. Furthermore, AREG-mediated increase of sphere formation, drug resistance toward docetaxel and carboplatin, as well as tumorigenicity of SKOV-I6 and OVS1 cells could be abrogated by miR-34c-5p. We further demonstrated that miR-34c-5p inhibited ovarian cancer stemness through downregulation of the AREG-EGFR-ERK pathway. Overexpression of AREG was found to be correlated with advanced ovarian cancer stages and poor prognosis. Taken together, our data suggest that AREG promotes ovarian cancer stemness and drug resistance via the AREG-EGFR-ERK pathway and this is inhibited by miR-34c-5p. Targeting AREG, miR-34c-5p could be a potential strategy for anti-cancer-stem cell therapy in ovarian cancer.
Collapse
|
19
|
Panich T, Tragoolpua K, Pata S, Tayapiwatana C, Intasai N. Downregulation of Extracellular Matrix Metalloproteinase Inducer by scFv-M6-1B9 Intrabody Suppresses Cervical Cancer Invasion Through Inhibition of Urokinase-Type Plasminogen Activator. Cancer Biother Radiopharm 2017; 32:1-8. [DOI: 10.1089/cbr.2016.2126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tipattaraporn Panich
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Supansa Pata
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nutjeera Intasai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Shen H, Li L, Zhou S, Yu D, Yang S, Chen X, Wang D, Zhong S, Zhao J, Tang J. The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumour Biol 2016; 37:15359–15370. [PMID: 27658778 DOI: 10.1007/s13277-016-5418-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family members are known to process the target membrane-bound molecules through the quick induction of their protease activities under interaction with other molecules, which have diverse roles in tissue morphogenesis and pathophysiological remodeling. Among these, ADAM17 is a membrane-bound protease that sheds the extracellular domain of various receptors or its ligands from the cell membrane and subsequently activates downstream signaling transduction pathways. Importantly, breast cancer remains a mainspring of cancer-induced death in women, and numerous regulatory pathways have been implicated in the formation of breast cancer. Substantial evidence has demonstrated that an obvious increased in ADAM17 cell surface expression has been discovered in breast cancer and was shown to be associated with mammary tumorigenesis, invasiveness, and drug resistance. Over the last decades, it has received more than its share of attention that ADAM17 plays a potential role in breast cancer, including cell proliferation, invasion, angiogenesis, apoptosis, and trastuzumab resistance. In our review, we discuss the mechanisms through which ADAM17 acts on breast cancer tumorigenesis and progression. Thus, this will provide further impetus for exploiting ADAM17 as a new target for breast cancer treatment.
Collapse
Affiliation(s)
- Hongyu Shen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, 210006, China
| | - Siying Zhou
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Nanjing University of Traditional Chinese Medicine, Xianlin Road 138, Nanjing, Jiangsu, 210023, China
| | - Dandan Yu
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Sujin Yang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Dandan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| | - Jinhai Tang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
21
|
CD147/EMMPRIN overexpression and prognosis in cancer: A systematic review and meta-analysis. Sci Rep 2016; 6:32804. [PMID: 27608940 PMCID: PMC5016850 DOI: 10.1038/srep32804] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
CD147/EMMPRIN (extracellular matrix metalloproteinase inducer) plays an important role in tumor progression and a number of studies have suggested that it is an indicator of tumor prognosis. This current meta-analysis systematically reevaluated the predictive potential of CD147/EMMPRIN in various cancers. We searched PubMed and Embase databases to screen the literature. Fixed-effect and random-effect meta-analytical techniques were used to correlate CD147 expression with outcome measures. A total of 53 studies that included 68 datasets were eligible for inclusion in the final analysis. We found a significant association between CD147/EMMPRIN overexpression and adverse tumor outcomes, such as overall survival, disease-specific survival, progression-free survival, metastasis-free survival or recurrence-free survival, irrespective of the model analysis. In addition, CD147/EMMPRIN overexpression predicted a high risk for chemotherapy drugs resistance. CD147/EMMPRIN is a central player in tumor progression and predicts a poor prognosis, including in patients who have received chemo-radiotherapy. Our results provide the evidence that CD147/EMMPRIN could be a potential therapeutic target for cancers.
Collapse
|
22
|
Kim TW, Ryu HH, Li SY, Li CH, Lim SH, Jang WY, Jung S. PDIA6 regulation of ADAM17 shedding activity and EGFR-mediated migration and invasion of glioblastoma cells. J Neurosurg 2016; 126:1829-1838. [DOI: 10.3171/2016.5.jns152831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVEIn patients with glioblastoma, local invasion of tumor cells causes recurrence and shortens survival. The goal of this study was to determine whether protein disulfide isomerase (PDI) A6 regulates migration and invasion of glioblastoma cells and the associated factors.METHODSU87MG cells were treated with either PDIA6 or ADAM17 small interfering RNA (siRNA) fragments or with both types of siRNA fragments, and expression was confirmed by reverse transcription–polymerase chain reaction and Western blot. Migration and invasion were assessed using a wound-healing assay, a Matrigel assay, and an organotypic culture system. After the U87MG cells were treated with siRNAs and epidermal growth factor receptor (EGFR) inhibitors, the expression of matrix metalloproteinase–2 (MMP-2), membrane Type 1-matrix metalloproteinase (MT1-MMP), integrin, phosphorylated focal adhesion kinase (pFAK), and phosphorylated EGFR (pEGFR) was detected by Western blotting and zymography.RESULTSU87MG cell migration and invasion increased significantly after inhibition of PDIA6. The MMP-2 activation ratio and ADAM17 activity (as a sheddase of the proligand) increased, and expression of pEGFR, pFAK, integrin α5β3, and MT1-MMP was induced, compared with control levels. Furthermore, heparin-binding epidermal growth factor (EGFR signaling ligand) was highly expressed in PDIA6-knockdown cells. After siPDIA6-transfected U87MG cells were treated with EGFR signaling inhibitors, expression of pFAK, MMP-2, and MT1-MMP decreased and invasion decreased significantly. Simultaneous double-knockdown of PDIA6 and ADAM17 reduced pEGFR and pFAK expression, compared with control levels.CONCLUSIONSThe authors propose that inhibiting PDIA6 could transduce EGFR signaling by activating and inducing ADAM17 during migration and invasion of U87MG glioblastoma cells. The results of this study suggest that PDIA6 is an important component of EGFR-mediated migration and invasion of U87MG cells. This is the first report of the effects of PDIA6 on migration and invasion in glioblastoma.
Collapse
Affiliation(s)
- Tae-Wan Kim
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
| | - Hyang-Hwa Ryu
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Song-Yuan Li
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Chun-Hao Li
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Sa-Hoe Lim
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Youl Jang
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
| | - Shin Jung
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| |
Collapse
|