1
|
Tian J, Kong E, Wang X, Xie Z, Chang CYY, Sheu JJC, Hao Q, Sun L. RSF-1 siRNA Enhances Tumor Radiosensitivity in Cervical Cancer via Enhanced DNA Damage, Cell Cycle Redistribution, and Promotion of Apoptosis. Onco Targets Ther 2020; 13:3061-3071. [PMID: 32308437 PMCID: PMC7154003 DOI: 10.2147/ott.s246632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/23/2020] [Indexed: 01/31/2023] Open
Abstract
Background Remodeling and spacing factor-1 (RSF-1) is an identified tumor biomarker that is overexpressed in a variety of human cancers, but its effect on radiotherapy remains unclear. In this study, we aimed to explore the effect of RSF-1 siRNA on sensitizing cervical cancer cells to radiation and its underlying mechanism. Methods The mRNA and protein expression of RSF-1 in tissue and cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell counting kit-8 (CCK-8) and colony formation assay were used to examine cell proliferation. Flow cytometry was used to analyzed the cell cycle and cell apoptosis. DNA damage was examined by the comet assay. ATM, ATR, CHK1, CHK2, H2AX, γH2AX and phosphorylated ATM, ATR, CHK1 and CHK2 were detected by Western blotting. γH2AX foci were demonstrated by immunofluorescence staining. Results RSF-1 was upregulated in cervical cancer tissue and decreased after effective treatment. RSF-1 siRNA in combination with radiation suppressed cell viability, redistributed cell cycles and also induced cell apoptosis in HeLa and SiHa cell lines. Further, knockdown of RSF-1 induced DNA damage by attenuating DNA repair capability, thereby sensitizing cervical cancer cells to radiation. Conclusions These data demonstrate that RSF-1 siRNA enhanced the sensitivity of radiotherapy, and targeting RSF-1 may be a promising approach for the development of novel radiosensitizing agents for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jing Tian
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Enqi Kong
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, People's Republic of China
| | - Xiangyu Wang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhaoguang Xie
- Department of Maternity, Jinan Maternal and Child Health Hospital Affiliated to Shandong First Medical University, Jinan, 250001, People's Republic of China
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Quan Hao
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Li Sun
- Department of Gynecological Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, People's Republic of China.,Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, People's Republic of China
| |
Collapse
|
2
|
Höflmayer D, Hamuda M, Schroeder C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Weidemann S, Möller K, Izbicki JR, Jacobsen F, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Sauter G, Burandt E, Lebok P, Lennartz M, Fraune C, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. High RSF1 protein expression is an independent prognostic feature in prostate cancer. Acta Oncol 2020; 59:268-273. [PMID: 31687881 DOI: 10.1080/0284186x.2019.1686537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Remodelling and spacing factor 1 (RSF1) is involved in the regulation of chromatin remodelling and represents a potential therapeutic target. High RSF1 expression has been linked to adverse tumour features in many cancer types, but its role in prostate cancer is uncertain.Methods: In this study, RSF1 expression was analysed by immunohistochemistry on a tissue microarray with 17,747 prostate cancers.Results: Nuclear RSF1 staining of 16,456 interpetable cancers was considered strong, moderate, weak and negative in 25.2%, 48.7%, 5.3% and 20.8% of cancers respectively. Positive RSF1 expression was associated with advanced tumour stage, high Gleason grade, lymph node metastasis (p < .0001 each), early biochemical recurrence (p < .0003) and more frequent in the ERG positive than in the ERG negative subset (88% versus 71%; p < .0001). Subset analysis revealed, that associations between RSF1 expression and unfavourable tumour phenotype and PSA recurrence were present in both subgroups but stronger in the ERG negative than in the ERG positive subset. The univariate Cox proportional hazard ratio for PSA recurrence-free survival for strong versus negative RSF1 expression was a weak 1.60 compared with 5.91 for the biopsy Gleason grade ≥4 + 4 versus ≤3 + 3. The positive association of RSF1 protein detection with deletion of 3p13, 10q23 (PTEN), 12p13, 16q23, and 17p13 (p < .0001 each) suggest a role of high RSF1 expression in the development of genomic instability.Conclusion: In summary, the results of our study identify RSF1 as an independent prognostic marker in prostate cancer with a particularly strong role in ERG negative cases.
Collapse
Affiliation(s)
- Doris Höflmayer
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Moslim Hamuda
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jacob R. Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Mandelkow
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C. Blessin
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
He J, Fu L, Li Q. Rsf‑1 regulates malignant melanoma cell viability and chemoresistance via NF‑κB/Bcl‑2 signaling. Mol Med Rep 2019; 20:3487-3498. [PMID: 31485613 PMCID: PMC6755232 DOI: 10.3892/mmr.2019.10610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Remodeling and spacing factor 1 (Rsf-1) has been reported as overexpressed in numerous cancers; however, its expression, biological functions and mechanisms in malignant melanoma remain unknown. In the present study, the expression of Rsf-1 was investigated in 50 cases of malignant melanoma samples using immunohistochemistry. The results revealed that Rsf-1 expression was elevated in 38% of specimens. MTT, colony formation, Transwell and flow cytometry assays were performed to investigate the functions of Rsf-1. Knockdown of Rsf-1 in the MV3 and A375 melanoma cell lines decreased the viability, invasion and cell cycle transition of cells. Conversely, overexpression of Rsf-1 in M14 cells with low endogenous Rsf-1 expression induced opposing effects. Further analysis revealed that Rsf-1 knockdown decreased matrix metalloproteinase-2, cyclin E and phosphorylated-IκB expression. Additionally, Rsf-1 depletion reduced cisplatin resistance and significantly increased the cisplatin-associated apoptotic rate, whereas Rsf-1 overexpression exhibited opposing effects. Rsf-1 also maintained the mitochondrial membrane potential following cisplatin treatment. Analysis of apoptosis-associated proteins revealed that Rsf-1 positively regulated B-cell lymphoma 2 (Bcl-2), cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2, and downregulated Bcl-2-associated X protein expression. Nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB) inhibition reversed the effects of Rsf-1 on Bcl-2. In conclusion, Rsf-1 was overexpressed in malignant melanoma and may contribute to the malignant behaviors of melanoma cells, possibly via the regulation of NF-κB signaling. Therefore, Rsf-1 may be a potential therapeutic target in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Jiani He
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Fu
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qingchang Li
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
4
|
Chromatin-remodeling factor, RSF1, controls p53-mediated transcription in apoptosis upon DNA strand breaks. Cell Death Dis 2018; 9:1079. [PMID: 30348983 PMCID: PMC6197202 DOI: 10.1038/s41419-018-1128-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Remodeling and spacing factor 1 (RSF1), which is one of chromatin-remodeling factors, has been linked to the DNA damage response (DDR) and DNA repair. However, the biological consequence of RSF1 deficiency in DDR in vivo and its molecular mechanisms remain unknown. Because defective DDR is related to neuropathological phenotypes, we developed neural-specific Rsf1 knockout mice. Rsf1 deficiency did not result in any neuropathological abnormalities, but prevented neural apoptosis triggered by excessive DNA strand breaks during neurogenesis. Likewise, cell death was significantly reduced in RSF1 deficient human cell lines after DNA damage, and the global transcriptome of these cells revealed that the expressions of p53 downstream genes were significantly reduced upon DNA strand breaks. Inactivation of these genes resulted from decreased binding of p53/p300 complex and subsequent reduction of H3 acetylation at their promoters. Our data show that RSF1 is necessary for p53-dependent gene expression in response to DNA strand breaks via controlling the accessibility of p53/p300 complex to its target genes and contributes to the maintenance of cellular integrity.
Collapse
|
5
|
Liu Y, Gai J, Fu L, Zhang X, Wang E, Li Q. Effects of RSF-1 on proliferation and apoptosis of breast cancer cells. Oncol Lett 2018; 16:4279-4284. [PMID: 30214561 PMCID: PMC6126160 DOI: 10.3892/ol.2018.9172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
Effect of interference with chromatin remodeling and spacing factor-1 (RSF-1) on proliferation and apoptosis of breast cancer cells was investigated. MCF-7 and SKBR-3 cells were cultured in vitro and were divided into 3 groups: control group, negative siRNA control group (NC) and RSF-1 siRNA group. Western blot analysis was used to detect the expression of RSF protein after interference. Cell Counting Kit-8 (CCK-8) method was used to detect the effect of RSF-1 siRNA on cell proliferation. Plate cloning assay was used to detect the effect of RSF-1 siRNA on cell clone formation ability. Annexin V/PI double staining method was used to detect the effect of RSF-1 siRNA on cell apoptosis. Effect of RSF-1 siRNA on nuclear factor-κB (NF-κB) and its downstream signaling pathway were detected by western blot analysis. Western blot analysis showed that RSF-1 siRNA significantly downregulated the expression of RSF-1 protein in MCF-7 and SKBR-3 cells at 72 h after transfection (P<0.01). Cell proliferation assay showed that RSF-1 siRNA significantly reduced the proliferation ability and clone formation ability of MCF-7 and SKBR-3 cells compared with the control group (P<0.01). Annexin V/PI double staining assay results showed that compared with the control group, RSF-1 siRNA significantly increased the apoptosis rate of MCF-7 and SKBR-3 cells (P<0.01). Helenalin and Rsf-1 siRNA significantly reduced the expression levels of p-p65, Bcl-2, and XIAP proteins (P<0.01). Interfering with the expression of RSF-1, gene can effectively inhibit the proliferation of MCF-7 and SKBR-3 cells and promote their apoptosis. RSF-1 can be used as a potential new therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuhui Liu
- Staff Room of Pathology, China Medical University, College of Basic Medical Science, Shenyang, Liaoning 110001, P.R. China
| | - Junda Gai
- Staff Room of Pathology, China Medical University, College of Basic Medical Science, Shenyang, Liaoning 110001, P.R. China
| | - Lin Fu
- Staff Room of Pathology, China Medical University, College of Basic Medical Science, Shenyang, Liaoning 110001, P.R. China
| | - Xiuwei Zhang
- Department of Pathology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Enhua Wang
- Staff Room of Pathology, China Medical University, College of Basic Medical Science, Shenyang, Liaoning 110001, P.R. China
| | - Qingchang Li
- Staff Room of Pathology, China Medical University, College of Basic Medical Science, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
6
|
Wang X, Sheu JJC, Lai MT, Yin-Yi Chang C, Sheng X, Wei L, Gao Y, Wang X, Liu N, Xie W, Chen CM, Ding WY, Sun L. RSF-1 overexpression determines cancer progression and drug resistance in cervical cancer. Biomedicine (Taipei) 2018; 8:4. [PMID: 29480799 PMCID: PMC5825929 DOI: 10.1051/bmdcn/2018080104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Remodeling spacing factor 1 (RSF-1/HBXAP) has been linked to a variety of cancer types, however, its roles and the therapeutic potential are not clear in cervical cancer. METHODS RSF-1 expression in cancer tissues was analyzed by immunohistochemical staining followed by statistical analysis with SPSS. Anti-RSF-1 studies were performed by treating cells with specific siRNA or a dominant mutant form (RSF-D4). RESULTS RSF-1 expression correlates with cancer progression that strongly-positive staining can be found in 67.7% carcinomas and 66.7% CIN lesions, but none in normal tissues. Such overexpression also associated with increased tumor size, poor differentiation, higher nodal metastasis and advanced clinical stages. Kaplan- Meier analysis confirmed that cancer patients with high RSF-1 levels exhibited a significantly shorter survival time than those with low RSF-1 levels. Downregulation of RSF-1 by siRNA silencing or RSF-D4 reduced cell growth and increased drug sensitivity toward paclitaxel treatment in HeLa cells. CONCLUSIONS RSF-1 participates in the tumor progression of cervical cancer and could be considered as an early prognostic marker for cancer development and clinical outcome. Therapies based on anti-RSF-1 activity may be beneficial for patients with RSF-1 overexpression in their tumors.
Collapse
Affiliation(s)
- Xiangyu Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250022 China
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University Kaohsiung 804 Taiwan
- Human Genetic Center, China Medical University Hospital Taichung 404 Taiwan
- School of Chinese Medicine, China Medical University Taichung 404 Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare Taichung 403 Taiwan
| | | | - Xiugui Sheng
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Ling Wei
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yongsheng Gao
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Xingwu Wang
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Naifu Liu
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Wenli Xie
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250022 China
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital Taichung 404 Taiwan
| | - Wendy Y. Ding
- Human Genetic Center, China Medical University Hospital Taichung 404 Taiwan
| | - Li Sun
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
7
|
Zhang X, Xue D, Hao F, Xie L, He J, Gai J, Liu Y, Xu H, Li Q, Wang E. Remodeling and spacing factor 1 overexpression is associated with poor prognosis in renal cell carcinoma. Oncol Lett 2018; 15:3852-3857. [PMID: 29467902 DOI: 10.3892/ol.2018.7797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to assess the expression and prognostic significance of remodeling and spacing factor 1 (RSF1; HBXAP) in renal cell carcinoma (RCC). RSF1 expression was analyzed using immunohistochemistry on tissue samples from a consecutive series of 137 patients with RCC who underwent tumor resection between November 2000 and March 2004. The associations between RSF1 expression, clinicopathological factors and patient survival were investigated. Immunohistochemistry revealed that RSF1 was highly expressed in 43.1% (59/137) of the RCC samples. RSF1 expression levels were associated with the T stage of the Tumor-Node-Metastasis grading system. Kaplan-Meier survival analysis indicated that high RSF1 expression in RCC was significantly associated with a poor prognosis. Multivariate analysis revealed that RSF1 expression is an independent prognostic parameter for the duration of overall survival of patients with RCC. The results demonstrated that a high expression level of RSF1 in RCC is associated with advanced tumor stages and a poor prognosis. To the best of our knowledge, the present study provides novel evidence of the biological significance of RSF1 expression in RCC.
Collapse
Affiliation(s)
- Xiuwei Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Pathology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Fengxia Hao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lingling Xie
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiani He
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Junda Gai
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuhui Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongtao Xu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Liu Y, Li G, Liu C, Tang Y, Zhang S. RSF1 regulates the proliferation and paclitaxel resistance via modulating NF-κB signaling pathway in nasopharyngeal carcinoma. J Cancer 2017; 8:354-362. [PMID: 28261335 PMCID: PMC5332885 DOI: 10.7150/jca.16720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/15/2016] [Indexed: 01/29/2023] Open
Abstract
Purpose: Aberrant expression and dysfunction of RSF1 has been reported in diverse human malignancies. However, its exact role in nasopharyngeal carcinoma (NPC) remains unclear. Methods: The expression of RSF1 mRNA and protein were assayed by qRT-PCR and western blotting, and their correlations with clinicopathological parameters of patients with NPC were further analysed. Lentivirus mediated RSF1 shRNA and RSF1 cDNA were used to knockdown and upregulate the expression of RSF1. CCK8 assays and flow cytometry were applied to monitor the changes of proliferation and paclitaxel sensitivity caused by RSF1 modulation, inhibition of NF-κB pathway by inhibitor Bay 11-7082 and Survivin knockdown. Western blotting was used to detect protein alterations in NF-κB signaling pathway. Results: Our present study demonstrated that both mRNA and protein expressions of RSF1 were increased and correlated with advanced NPC clinical stage. Functional analyses revealed that RSF1 inhibition or overexpression induced changes in cell cycle, apoptosis, and then led to altered proliferation and paclitaxel sensitivity in diverse NPC cells in vitro. Further mechanism investigation hinted that RSF1 overexpression in NPC CNE-2 cells activated NF-κB pathway and promoted the expression NF-κB dependent genes involved in cell cycle and apoptosis including Survivin. Importantly, inhibition of NF-κB pathway by Bay 11-7082 and knockdown its downstream Survivin reversed the paclitaxel resistance caused by RSF1 overexpression. Conclusions: Taken together, our data indicate that RSF1 regulates the proliferation and paclitaxel resistance via activating NF-κB signaling pathway and NF-κB-dependent Survivin upregulation, suggesting that RSF1 may be used as a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Yaoyun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| |
Collapse
|
9
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|