1
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tsyganov MM, Tsydenova IA, Markovich VA, Ibragimova MK, Rodionov EO, Tuzikov SA, Litvyakov NV. Expression heterogeneity of ABC-transporter family genes and chemosensitivity genes in gastric tumor, carcinomatosis and lymph node metastases. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-78-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Metastatic tumors (particularly gastric cancer) have been found to be characterized by heterogeneity between the primary tumor and metastases. This type of heterogeneity comes to the fore when treating primary-metastatic forms of tumor and is an important reason for the low effectiveness of their treatment. In this regard, comparative analysis of ABC-transporter gene expression and chemosensitivity genes will allow to characterize to a certain extent the resistance and sensitivity of primary tumor, carcinomatosis and metastases to therapy and provide the basis for personalized treatment approach.Aim. To evaluate expression heterogeneity of ABC-transporter genes and chemosensitivity genes in gastric tumor, carcinomatosis and lymph node metastases.Materials and methods. Overall 41 patients with disseminated gastric cancer stage IV with carcinomatosis of peritoneum were included in the investigation. All patients underwent surgery according to Roux palliative gastrectomy. After surgery patients underwent chemotherapy depending on indications. RNA was isolated using RNeasy Plus mini kit (Qiagen, Germany). The expression level of ABC transporter genes (ABCB1, ABCC1, ABCC2, ABCC5, ABCG1, ABCG2) and chemosensitivity genes (BRCA1, RRM1, ERCC1, TOP1, TOP2α, TUBβ3, TYMS, GSTP1) was assessed by reverse transcription polymerase chain reaction (RT-PCR) in primary tumor, carcinomatosis and lymph node metastases.Results. The expression levels of the genes under study were shown to vary widely. For ABC transporter genes, ABCG1 (3.1 ± 1.1; max 32.0), ABCG2 (7.9 ± 2.3; max 54.1), ABCG2 (9.6 ± 3.8; max 101.0) were the most expressed genes in gastric tumor tissue, carcinomatosis and lymph node metastasis, respectively. Hyperexpression among chemosensitivity genes at all three sites was characteristic only of TOP2α (17.2 ± 6.0; max. 161.9; 10.8 ± 4.1; max. 105.1; 35.3 ± 0.8; max. 439.6, respectively). We found that TOP2α and BRCA1 gene expression levels were higher in lymph node metastasis compared with gastric tumor tissue and carcinomatosis (at p = 0.005 and p = 0.001). Whereas ABCC1 gene expression was statistically significantly higher in carcinomatosis (p = 0.03).Conclusion. Thus, a high level of expression heterogeneity is observed in gastric cancer, which affects the expression patterns of various genes in different localizations. The expression profile can be used to determine the level of heterogeneity and approach to personalized therapy tactics.
Collapse
Affiliation(s)
- M. M. Tsyganov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia
| | - I. A. Tsydenova
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - V. A. Markovich
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - M. K. Ibragimova
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia; National Research Tomsk State University
| | - E. O. Rodionov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - S. A. Tuzikov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - N. V. Litvyakov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| |
Collapse
|
3
|
Molecular Bases of Mechanisms Accounting for Drug Resistance in Gastric Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12082116. [PMID: 32751679 PMCID: PMC7463778 DOI: 10.3390/cancers12082116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.
Collapse
|
4
|
Astras G, Papagiannopoulos CI, Kyritsis KA, Markitani C, Vizirianakis IS. Pharmacogenomic Testing to Guide Personalized Cancer Medicine Decisions in Private Oncology Practice: A Case Study. Front Oncol 2020; 10:521. [PMID: 32411592 PMCID: PMC7199631 DOI: 10.3389/fonc.2020.00521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Innovative tumor profiling methodologies are utilized to elucidate the pharmacogenomic landscape of tumor cells in order to support the molecularly guided delivery of therapeutics. Indeed, improved clinical outcomes are achieved in oncology practice by providing the physicians with expert-guided, standardized, and easily interpretable knowledge, translated from molecular profiling analysis to support clinical decision-making. However, there is still limited utilization of the technology especially in small private oncology practices. In this work, we analyzed how molecularly guided interventions in 17 consented cancer patients led to an overall improvement of disease response rates in a private oncology center. The precision medicine strategy was based on the OncoDEEP™ profiling solutions and focused on finding clinically actionable relationships between tumor biomarkers and drug responses. The obtained data support the notion that (a) following the pharmacogenomic-derived recommendations favorably impacted cancer therapy progression, and (b) the earlier profiling followed by the delivery of molecularly targeted therapy led to more durable and improved pharmacological response rates. Moreover, we report the example of a patient with metastatic gastric adenocarcinoma who, based on the molecular profiling data, received an off-label therapy that resulted in a complete response and a current cancer-free maintenance status. Overall, our data provide a paradigm on how molecular tumor profiling can improve decision-making in the routine private oncology practice.
Collapse
Affiliation(s)
- George Astras
- Department of Oncology, American Medical Center, Nicosia, Cyprus
| | | | - Konstantinos A Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Prognostic Value of Excision Repair Cross-Complementing mRNA Expression in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6204684. [PMID: 30417012 PMCID: PMC6207904 DOI: 10.1155/2018/6204684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Except for excision repair cross-complementing 1 (ERCC1), mRNA expression of the remaining ERCC genes has not been investigated in the prognosis of gastric cancer (GC). The present study aimed to explore the mRNA expression and prognostic values of each member of the ERCC family in GC patients by using the Kaplan–Meier (KM) plotter tool. The details of each ERCC family member were entered into a database and GC patients were separated into high and low expression to draw survival plots using the KM plotter. In the present study, we observed that high expression of ERCC1 mRNA was significantly associated with longer overall survival (OS) for all GC patients (hazard ratio [HR]=0.77, 95% confidence intervals [CI]=0.63–0.95, P=0.016) compared with low expression. High expression of ERCC4 and ERCC6 mRNA indicated a worse OS for all GC patients (HR=1.28, 95% CI=1.02–1.6, P=0.035 and HR=1.25, 95% CI=1.02–1.54, P=0.029, respectively) and especially for patients with intestinal-type GC (HR=1.87, 95% CI=1.26–2.79, P=0.0018 and HR=1.62, 95% CI=1.04–2.54, P=0.033, respectively). High ERCC8 mRNA expression indicated a worse OS for all GC patients (HR=1.34, 95% CI=1.02–1.76, P=0.034) and especially for patients with diffuse-type GC (HR=2.25, 95% CI=1.36–3.75, P=0.0013). In conclusion, our findings indicate that ERCC4, ERCC6, and ERCC8 may be potential biomarkers for GC prognosis and may serve as potential therapeutic targets for GC. However, these findings still need further verification.
Collapse
|
6
|
Li MX, Bi XY, Zhao H, Huang Z, Han Y, Zhao DB, Zhao JJ, Cai JQ. Excision Repair Cross-complementation Group 1 is a Prognostic Biomarker in Patients with Colorectal Cancer Receiving Chemotherapy. Chin Med J (Engl) 2017; 129:586-93. [PMID: 26904994 PMCID: PMC4804441 DOI: 10.4103/0366-6999.176993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Conflicting results about the association between expression level of excision repair cross-complementation group 1 (ERCC1) and clinical outcome in patients with colorectal cancer (CRC) receiving chemotherapy have been reported. Thus, we searched the available articles and performed the meta-analysis to elucidate the prognostic role of ERCC1 expression in patients with CRC. Methods: A thorough literature search using PubMed (Medline), Embase, Cochrane Library, Web of Science databases, and Chinese Science Citation Database was conducted to obtain the relevant studies. Pooled hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the results. Results: A total of 11 studies were finally enrolled in this meta-analysis. Compared with patients with lower ERCC1 expression, patients with higher ERCC1 expression tended to have unfavorable overall survival (OS) (HR = 2.325, 95% CI: 1.720–3.143, P < 0.001), progression-free survival (PFS) (HR = 1.917, 95% CI: 1.366–2.691, P < 0.001) and poor response to chemotherapy (OR = 0.491, 95% CI: 0.243–0.990, P = 0.047). Subgroup analyses by treatment setting, ethnicity, HR extraction, detection methods, survival analysis, and study design demonstrated that our results were robust. Conclusions: ERCC1 expression may be taken as an effective prognostic factor predicting the response to chemotherapy, OS, and PFS. Further studies with better study design and longer follow-up are warranted in order to gain a deeper understanding of ERCC1's prognostic value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian-Qiang Cai
- Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
7
|
Wan J, Chao L, Lee AC, Chen Q. Higher Expression of ERCC1 May Be Associated with Resistance to Adjuvant Platinum-Based Chemotherapy in Gastric Cancer. Cancer Invest 2017; 35:85-91. [PMID: 28102711 DOI: 10.1080/07357907.2016.1267741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Potential predictive biomarker(s) to respond to chemotherapy in gastric cancer are unclear. Excision repair cross-complementing 1 (ERCC1), a DNA repair enzyme, is associated with clinical outcomes in gastric cancer. Here, we investigated the expression of ERCC1 in gastric cancer with platinum-based chemotherapy after surgery, and the association between ERCC1 expression and clinical parameters was analyzed. Our data showed that high levels of ERCC1 expression were positively associated with resistance to platinum-based chemotherapy but not with lymph node metastasis and pathological stage. In addition, patients with resistance to platinum-based chemotherapy probably had lymph node metastasis and pathological stage.
Collapse
Affiliation(s)
- Jiayi Wan
- a Department of Pathology , Wuxi No. 2 People's Hospital, Nanjing Medical University , Wuxi , China
| | - Lin Chao
- b Department of General Surgery , Wuxi No. 2 People's Hospital, Nanjing Medical University , Wuxi , China
| | - Arier C Lee
- c Section of Epidemiology and Biostatistics, School of Population Health , The University of Auckland , Auckland , New Zealand
| | - Qi Chen
- d The Hospital of Obstetrics & Gynaecology , Fudan University , Shanghai , China.,e Department of Obstetrics & Gynaecology , The University of Auckland , Auckland , New Zealand
| |
Collapse
|
8
|
Cao Y, Zhang G, Wang P, Zhou J, Gan W, Song Y, Huang L, Zhang Y, Luo G, Gong J, Zhang L. Clinical significance of UGT1A1 polymorphism and expression of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A in gastric cancer. BMC Gastroenterol 2017; 17:2. [PMID: 28056823 PMCID: PMC5217235 DOI: 10.1186/s12876-016-0561-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Individualized therapeutic regimen is a recently intensively pursued approach for targeting diseases, in which the search for biomarkers was considered the first and most important. Thus, the goal of this study was to investigate whether the UGT1A1, ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A genes are underlying biomarkers for gastric cancer, which, to our knowledge, has not been performed. METHODS Ninety-eight tissue specimens were collected from gastric cancer patients between May 2012 and March 2015. A multiplex branched DNA liquidchip technology was used for measuring the mRNA expressions of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A. Direct sequencing was performed for determination of UGT1A1 polymorphisms. Furthermore, correlations between gene expressions, polymorphisms and clinicopathological characteristics were investigated. RESULTS The expressions of TYMS, TUBB3 and STMN1 were significantly associated with the clinicopathological characteristics of age, gender and family history of gastric cancer, but not with differentiation, growth patterns, metastasis and TNM staging in patients with gastric cancer. No clinical characteristics were correlated with the expressions of ERCC1, BRCA1, RRM1 and TOP2A. Additionally, patients carrying G allele at -211 of UGT1A1 were predisposed to developing tubular adenocarcinoma, while individuals carrying 6TAA or G allele respectively at *28 or -3156 of UGT1A1 tended to have a local invasion. CONCLUSIONS The UGT1A1 polymorphism may be useful to screen the risk population of gastric cancer, while TYMS, TUBB3 and STMN1 may be potential biomarkers for prognosis and chemotherapy guidance.
Collapse
Affiliation(s)
- Yongkuan Cao
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China.
| | - Guohu Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Peihong Wang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jun Zhou
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Wei Gan
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Yaning Song
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ling Huang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ya Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Guode Luo
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jiaqing Gong
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| |
Collapse
|
9
|
Minnelide Overcomes Oxaliplatin Resistance by Downregulating the DNA Repair Pathway in Pancreatic Cancer. J Gastrointest Surg 2016; 20:13-23; discussion 23-4. [PMID: 26503259 PMCID: PMC4698020 DOI: 10.1007/s11605-015-3000-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/14/2015] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Oxaliplatin is part of pancreatic cancer therapy in the FOLFIRINOX or GEMOX/XELOX regimen. DNA damage repair is one of the factors responsible for oxaliplatin resistance that eventually develops in this cancer. Triptolide/Minnelide has been shown to be effective against pancreatic cancer in preclinical trials. In this study, we evaluated the efficacy of combination of triptolide and oxaliplatin against pancreatic cancer. METHODS Highly aggressive pancreatic cancer cells (MIA PaCa-2 and PANC-1) were treated with oxaliplatin (0-10 μM), low-dose triptolide (50 nM), or a combination of both for 24-48 h. Cell viability, apoptosis, and DNA damage were evaluated by appropriate methods. Nucleotide excision repair pathway components were quantitated using qPCR and Western blot. Combination of low doses of Minnelide and oxaliplatin was tested in an orthotopic murine model of pancreatic cancer. RESULTS Proliferation of pancreatic cancer cells was markedly inhibited by combination treatment. Triptolide potentiated apoptotic cell death induced by oxaliplatin and sensitized cancer cells towards oxaliplatin-induced DNA damage by suppressing the oxaliplatin-induced DNA damage repair pathway. Combination of low doses of Minnelide and oxaliplatin inhibited tumor progression by inducing significant apoptotic cell death in these tumors. CONCLUSIONS Combination of low doses of Minnelide and oxaliplatin has immense potential to emerge as a novel therapeutic strategy against pancreatic cancer.
Collapse
|
10
|
Araujo TDO, Costa LT, Fernandes J, Aucélio RQ, de Campos RC. Biomarkers to assess the efficiency of treatment with platinum-based drugs: what can metallomics add? Metallomics 2014; 6:2176-88. [PMID: 25387565 DOI: 10.1039/c4mt00192c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the approval of cisplatin as an antineoplastic drug, the medical and the scientific communities have been concerned about the side effects of platinum-based drugs, and this has been the dose-limiting factor that leads to reduced treatment efficiency. Another important issue is the intrinsic or acquired resistance of some patients to treatment. Identifying proper biomarkers is crucial in evaluating the efficiency of a treatment, assisting physicians in determining, at early stages, whether or not the patient presents resistance to the drug, minimizing severe side effects, and allowing them to redirect the established course of chemotherapy. A great effort is being made to identify biomarkers that can be used to predict the outcome of the treatment of cancer patients with platinum-based drugs. In this context, the metallomic approach has not yet been used to its full potential. Since the basis of these drugs is platinum, the monitoring of biomarkers containing this metal should be the natural approach to evaluate treatment progress. This review intends to show where the research in this field stands and points out some gaps that can be filled by metallomics.
Collapse
|