1
|
Zhou S, Chen S, Le J, Xu Y, Wang L. A novel end-to-end learning framework for inferring lncRNA-disease associations based on convolution neural network. Front Genet 2025; 16:1580512. [PMID: 40270543 PMCID: PMC12014579 DOI: 10.3389/fgene.2025.1580512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction In recent years, lots of computational models have been proposed to infer potential lncRNA-disease associations. Methods In this manuscript, we introduced a novel end-to-end learning framework named CNMCLDA, in which, we first adopted two convolutional neural networks to extract hidden features of diseases and lncRNAs separately. And then, by combining these hidden features of diseases and lncRNAs with known lncRNA-disease associations, we designed five different loss functions. Next, based on errors obtained by these loss functions, we would perform back propagation to fit parameters in CNMCLDA, and complete those missing values in lncRNA-disease relational matrix according to these fitted parameters. In order to demonstrate the prediction performance of CNMCLDA, intensive experiments have been carried out and experimental results show that CNMCLDA can achieve better performances than state-of-the-art competitive predictive models in frameworks of five-fold cross validation, ten-fold cross validation and leave-one-disease-out cross validation respectively. Results and Discussion Moreover, in case studies of gastric cancer, glioma and breast cancer, there are 19, 17 and 16 out of top 20 candidate lncRNAs inferred by CNMCLDA having been confirmed by recent relevant literatures separately, which demonstrated the outstanding performance of CNMCLDA as well. Hence, it is obvious that CNMCLDA may be an effective tool for prediction of potential lncRNA-disease associations in the future.
Collapse
Affiliation(s)
- Shunxian Zhou
- College of Information Science and Engineering, Hunan Women’s University, Changsha, China
| | - Sisi Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jinhai Le
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yangtai Xu
- Intelligent Equipment School, Changsha Rail Transit Institute, Changsha, China
| | - Lei Wang
- Changsha Technology Innovation Center of Artificial Intelligence Large Model Training, Changsha University, Changsha, China
| |
Collapse
|
2
|
Dastmalchi N, Alipour MR, Safaralizadeh R, Hajiasgharzadeh K. An Updated Review on Dysregulated lncRNAs and their Contribution to the Various Molecular Types of Lung Carcinoma. Anticancer Agents Med Chem 2025; 25:490-498. [PMID: 39754779 DOI: 10.2174/0118715206336608241104065557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/06/2025]
Abstract
Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates. This reveals a need to recognize novel techniques to treat malignancy and decrease the burden of lung cancer. Long noncoding RNAs (lncRNAs) manage vital cellular and biochemical functions. lncRNAs play crucial roles in transcriptional and translational processes and signaling cascades. Recently, lncRNAs have been reported to be associated with malignancy where their expression is deregulated, leading to abnormal cellular activities and signaling pathways. In various malignancies, including lung cancer, lncRNA deregulation disrupts normal cellular function, promoting tumorigenesis and influencing patient outcomes and treatment responses. Studies have shown that lncRNAs can act as both oncogenes and tumor suppressors, depending on the lung cancer subtype, specifically in Non-small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC). This dual role of lncRNAs as critical biomarkers might provide insights into lung cancer development and progression. lncRNAs have been discussed as key biomarkers in lung cancer. A comprehensive understanding of the biological activities of lncRNAs in NSCLC and SCLC may improve prognosis, diagnosis, and therapeutic methods. Researchers are increasingly interested in lncRNAs as potential diagnostic biomarkers and therapeutic targets in cancer treatment. As researchers continue to explore lncRNAs, their pivotal roles in lung cancer become increasingly evident. This review highlights the function of lncRNAs in lung carcinogenesis and discusses their molecular mechanisms of function.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
3
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
4
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
5
|
Construction of a ceRNA network in glioma and analysis of its clinical significance. BMC Genomics 2021; 22:722. [PMID: 34615480 PMCID: PMC8496082 DOI: 10.1186/s12864-021-08035-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Glioma is the most common central nervous system tumor with a poor survival rate and prognosis. Previous studies have found that long non-coding RNA (lncRNA) and competitive endogenous RNA (ceRNA) play important roles in regulating various tumor mechanisms. We obtained RNA-Seq data of glioma and normal brain tissue samples from TCGA and GTEx databases and extracted the lncRNA and mRNA expression data. Further, we analyzed these data using weighted gene co-expression network analysis and differential expression analysis, respectively. Differential expression analysis was also carried out on the mRNA data from the GEO database. Further, we predicted the interactions between lncRNA, miRNA, and targeted mRNA. Using the CGGA data to perform univariate and multivariate Cox regression analysis on mRNA. Results We constructed a Cox proportional hazard regression model containing four mRNAs and performed immune infiltration analysis. Moreover, we also constructed a ceRNA network including 21 lncRNAs, two miRNAs, and four mRNAs, and identified seven lncRNAs related to survival that have not been previously studied in gliomas. Through the gene set enrichment analysis, we found four lncRNAs that may have a significant role in tumors and should be explored further in the context of gliomas. Conclusions In short, we identified four lncRNAs with research value for gliomas, constructed a ceRNA network in gliomas, and developed a prognostic prediction model. Our research enhances our understanding of the molecular mechanisms underlying gliomas, providing new insights for developing targeted therapies and efficiently evaluating the prognosis of gliomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08035-w.
Collapse
|
6
|
Tan B, Li F, Chen Z, Li Y. Research Progress and Application Prospects of Long Noncoding RNAs in Gastric Neoplasms. Technol Cancer Res Treat 2021; 20:15330338211004940. [PMID: 33769145 PMCID: PMC8010804 DOI: 10.1177/15330338211004940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs longer than 200 nt that have almost no function for encoding proteins. As an important regulatory molecule of the human genome, lncRNAs play a regulatory role in the human body. LncRNAs have a variety of functions, such as signaling, guiding, baiting or scaffolding of functional proteins, and are closely related to tumor development. Gastric cancer is one of the most common malignant tumors. It has a high incidence, a low early diagnosis rate, and a poor prognosis, and it seriously threatens human health. Abnormal expression of lncRNAs can affect the occurrence, development, invasion and metastasis of gastric cancer. Therefore, lncRNAs are expected to become important biomarkers and new targets for the diagnosis and treatment of gastric cancer. LncRNAs have a significant potential to guide the diagnosis, treatment and prognosis of gastric cancer. This article reviews lncRNAs and the mechanisms that have been discovered in recent years related to gastrointestinal tumors.
Collapse
Affiliation(s)
- Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zihao Chen
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Downregulation of lncRNA HCP5 has inhibitory effects on gastric cancer cells by regulating DDX21 expression. Cytotechnology 2021; 73:1-11. [PMID: 33505109 DOI: 10.1007/s10616-020-00429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
LncRNA HCP5 has been confirmed to play crucial roles in many types of cancers. However, the role of lncRNA HCP5 in regulating the occurrence and development of gastric cancer (GC) remains unknown. In the current study, we aimed to investigate the precise effects of lncRNA HCP5 on cell proliferation, migration and invasion and molecular mechanisms in gastric cancer. Using RT-qPCR analysis, we found that lncRNA HCP5 was differentially expressed in GC cell lines. CCK-8, wound healing and transwell assay indicated that the proliferation, migration and invasion of gastric cancer cells were inhibited by downregulation of lncRNA HCP5 and lncRNA HCP5 overexpression exhibited the opposite effects in gastric cancer cells. Mechanistically, RNA binding protein immunoprecipitation and dual luciferase reporter assay confirmed the interaction between lncRNA HCP5 and DDX21. The effects of lncRNA HCP5 overexpression the proliferation, migration and invasion of GC cells were partly rescued by DDX21 silencing. Taken together, downregulation of lncRNA HCP5 exerted inhibitory effects on GC cell proliferation, migration and invasion through modulation of DDX21 expression, demonstrating the function of lncRNA HCP5 and DDX21 in GC progression.
Collapse
|
8
|
Xiao Y, Xiao Z, Feng X, Chen Z, Kuang L, Wang L. A novel computational model for predicting potential LncRNA-disease associations based on both direct and indirect features of LncRNA-disease pairs. BMC Bioinformatics 2020; 21:555. [PMID: 33267800 PMCID: PMC7709313 DOI: 10.1186/s12859-020-03906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
Background Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are closely associated with human diseases, and it is useful for the diagnosis and treatment of diseases to get the relationships between lncRNAs and diseases. Due to the high costs and time complexity of traditional bio-experiments, in recent years, more and more computational methods have been proposed by researchers to infer potential lncRNA-disease associations. However, there exist all kinds of limitations in these state-of-the-art prediction methods as well. Results In this manuscript, a novel computational model named FVTLDA is proposed to infer potential lncRNA-disease associations. In FVTLDA, its major novelty lies in the integration of direct and indirect features related to lncRNA-disease associations such as the feature vectors of lncRNA-disease pairs and their corresponding association probability fractions, which guarantees that FVTLDA can be utilized to predict diseases without known related-lncRNAs and lncRNAs without known related-diseases. Moreover, FVTLDA neither relies solely on known lncRNA-disease nor requires any negative samples, which guarantee that it can infer potential lncRNA-disease associations more equitably and effectively than traditional state-of-the-art prediction methods. Additionally, to avoid the limitations of single model prediction techniques, we combine FVTLDA with the Multiple Linear Regression (MLR) and the Artificial Neural Network (ANN) for data analysis respectively. Simulation experiment results show that FVTLDA with MLR can achieve reliable AUCs of 0.8909, 0.8936 and 0.8970 in 5-Fold Cross Validation (fivefold CV), 10-Fold Cross Validation (tenfold CV) and Leave-One-Out Cross Validation (LOOCV), separately, while FVTLDA with ANN can achieve reliable AUCs of 0.8766, 0.8830 and 0.8807 in fivefold CV, tenfold CV, and LOOCV respectively. Furthermore, in case studies of gastric cancer, leukemia and lung cancer, experiment results show that there are 8, 8 and 8 out of top 10 candidate lncRNAs predicted by FVTLDA with MLR, and 8, 7 and 8 out of top 10 candidate lncRNAs predicted by FVTLDA with ANN, having been verified by recent literature. Comparing with the representative prediction model of KATZLDA, comparison results illustrate that FVTLDA with MLR and FVTLDA with ANN can achieve the average case study contrast scores of 0.8429 and 0.8515 respectively, which are both notably higher than the average case study contrast score of 0.6375 achieved by KATZLDA. Conclusion The simulation results show that FVTLDA has good prediction performance, which is a good supplement to future bioinformatics research.
Collapse
Affiliation(s)
- Yubin Xiao
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, 410001, People's Republic of China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiang Feng
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, 410001, People's Republic of China
| | - Zhiping Chen
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, 410001, People's Republic of China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Lei Wang
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, 410001, People's Republic of China. .,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
9
|
Wang Q, Yan G. IDLDA: An Improved Diffusion Model for Predicting LncRNA-Disease Associations. Front Genet 2019; 10:1259. [PMID: 31867043 PMCID: PMC6909379 DOI: 10.3389/fgene.2019.01259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that long non-coding RNAs (lncRNAs) play important roles in a variety of biological processes associated with human diseases. However, the identification of lncRNA–disease associations by experimental methods is time-consuming and labor-intensive. Computational methods provide an effective strategy to predict more potential lncRNA–disease associations to some degree. Based on the hypothesis that phenotypically similar diseases are often associated with functionally similar lncRNAs and vice versa, we developed an improved diffusion model to predict potential lncRNA–disease associations (IDLDA). As a result, our model performed well in the global and local cross-validations, which indicated that IDLDA had a great performance in predicting novel associations. Case studies of colon cancer, breast cancer, and gastric cancer were also implemented, all lncRNAs which ranked top 10 in both databases were verified by databases and related literature. The results showed that IDLDA might play a key role in biomedical research.
Collapse
Affiliation(s)
- Qi Wang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guiying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
lncRNA SNHG5 Modulates Endometrial Cancer Progression via the miR-25-3p/BTG2 Axis. JOURNAL OF ONCOLOGY 2019; 2019:7024675. [PMID: 31885582 PMCID: PMC6925730 DOI: 10.1155/2019/7024675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
Endometrial carcinoma (EC) is one of the most common malignancies of the female genital tract, although the mechanisms of EC initiation and development remain incompletely understood. In this study, we demonstrated that the noncoding RNA SNHG5 can inhibit the proliferation, migration, and invasion of EC cells by suppressing the expression of its putative target miR-25-3p. Overexpression of miR-25-3p significantly promoted the proliferation, migration, and invasion of EC cells. In addition, we showed that miR-25-3p represses the expression of BTG2 by directly binding to the 3′-UTR of BTG2 mRNA. Furthermore, increased miR-25-3p expression and decreased SNHG5 and BTG2 expression were observed in EC tissues, and the expression of SNHG5 was negatively correlated to that of miR-25-3p but positively correlated to that of BTG2. In summary, for the first time, we report that the SNHG5/miR-25-3p/BTG2 axis plays an important role in EC progression and is of great potential clinical significance for EC diagnosis and therapy.
Collapse
|
11
|
Overexpression of PURPL and downregulation of NONHSAT062994 as potential biomarkers in gastric cancer. Life Sci 2019; 237:116904. [PMID: 31606380 DOI: 10.1016/j.lfs.2019.116904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023]
Abstract
AIMS Long non-coding RNAs (LncRNAs) play central roles in the formation and development of gastric cancer (GC). The aim of this study was to evaluate the expression of PURPL and NONHSAT062994 and the relationship between their expressions with clinical characteristics in GC. MAIN METHODS PURPL and NONHSAT062994 LncRNAs and p53 gene expression levels were analyzed both in 50 pairs of cancerous and adjacent noncancerous tissue samples in GC patients using qRT-PCR and in four sets of data obtained from Gene Expression Omnibus (GEO) database. Chi-square (χ2) test was used to determine the relationship between PURPL, NONHSAT062994 RNA levels and the clinicopathological characteristics of GC. Receiver operating characteristic (ROC) curves were drawn to represent sensitivity and specificity of PURPL and NONHSAT062994 expression as markers of GC. KEY FINDINGS Expression of PURPL was significantly upregulated in 50 GC samples as well as in GC tissues from GSE13911 and GSE27342 datasets. Our results demonstrated that PURPL RNA level in GC was significantly related to tumor size and histopathological grade. p53 expression at both protein and mRNA levels were significantly decreased in GC tissues compared to adjacent control samples. NONHSAT062994 expression was downregulated in 50-pair GC and GC tissues from GSE13915 dataset. However, NONHSAT062994 showed no consistently differential expression in GSE2637dataset. NONHSAT062994 was significantly associated with histological grade and tumor size. SIGNIFICANCE Overall, these results suggest that PURPL and NONHSAT062994 may play critical roles in the progression of GC and therefore might be considered as candidate tumor markers for therapeutic goals.
Collapse
|
12
|
Wang LL, Zhang L, Cui XF. Downregulation of long noncoding RNA LINC01419 inhibits cell migration, invasion, and tumor growth and promotes autophagy via inactivation of the PI3K/Akt1/mTOR pathway in gastric cancer. Ther Adv Med Oncol 2019; 11:1758835919874651. [PMID: 31579114 PMCID: PMC6759708 DOI: 10.1177/1758835919874651] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Accumulating evidence has highlighted the crucial role of long noncoding RNAs (lncRNAs) in the tumorigenesis of gastric cancer (GC), which is the most common gastrointestinal malignancy. The present study aimed to identify the capacity of lncRNA LINC01419 (LINC01419) in GC progression, with the potential mechanism explored. Methods: Highly expressed lncRNAs were identified by in silico analysis, with the LINC01419 expression in GC tissues measured using reverse transcription-quantitative PCR (RT-qPCR). The GC cells were subsequently transfected with siRNA against LINC01419 or Rapamycin (the inhibitor of the mTOR pathway), or both, in order to measure cell migration and invasion in vitro as well as tumor growth and metastasis in vivo. Moreover, the expression of PI3K/Akt1/mTOR pathway-associated factors was determined. Results: LINC01419, highly expressed in GC samples of the Gene Expression Omnibus database, was observed to be markedly upregulated in GC tissues. Moreover, LINC01419 silencing, or PI3K/Akt1/mTOR pathway inhibition, exhibited an inhibitory role in GC cell migration and invasion in vitro, coupled with promoted cell autophagy in vitro, and inhibited tumor growth and metastasis in vivo. It was also revealed that LINC01419 silencing blocked the PI3K/Akt1/mTOR pathway, as proved by decreased extents of Akt1 and mTOR phosphorylation. Conclusions: In conclusion, LINC01419 inhibition may suppress GC cell invasion and migration, and promote autophagy via inhibition of the PI3K/Akt1/mTOR pathway. This provides significant theoretical basis and possibilities for further elucidation of the molecular mechanism of GC and finding new molecular-targeted therapeutic regimens.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Xiao-Feng Cui
- Department of Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province 130033, China
| |
Collapse
|
13
|
Song EL, Xing L, Wang L, Song WT, Li DB, Wang Y, Gu YW, Liu MM, Ni WJ, Zhang P, Ma X, Zhang X, Yao J, Chen Y, An RH. LncRNA ADAMTS9-AS2 inhibits cell proliferation and decreases chemoresistance in clear cell renal cell carcinoma via the miR-27a-3p/FOXO1 axis. Aging (Albany NY) 2019; 11:5705-5725. [PMID: 31400752 PMCID: PMC6710069 DOI: 10.18632/aging.102154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence reveals the principal role of long noncoding RNAs in the progression of clear cell renal cell carcinoma (ccRCC). However, little is known about the underlying mechanism of ADAM metallopeptidase with thrombospondin type 1 motif, 9 antisense RNA 2 (ADAMTS9-AS2) in ccRCC. Here, bioinformatics analyses verified ADAMTS9-AS2 is a long noncoding RNA and its high expression was associated with better prognosis of ccRCC. ADAMTS9-AS2 was clearly downregulated in ccRCC clinical samples and cell lines. Clinical data showed low-expressed ADAMTS9-AS2 was correlated with worse overall survival in ccRCC patients. Next, miR-27a-3p was identified as an inhibitory target of ADAMTS9-AS2 by dual-luciferase reporter and RNA immunoprecipitation assays. Both overexpressed ADAMTS9-AS2 and underexpressed miR-27a-3p in ccRCC cell lines led to the inhibition of cell proliferation and the reduction of chemoresistance. Additionally, Forkhead Box Protein O1 (FOXO1) was confirmed as the inhibitory target of miR-27a-3p. Induced by ADAMTS9-AS2 overexpression, cell proliferation and chemoresistance exhibited an obvious reduction, FOXO1 expression showed an evident increase, but all were reversed after miR-27a-3p was simultaneously overexpressed. Collectively, these results suggest ADAMTS9-AS2 inhibits the progression and impairs the chemoresistance of ccRCC via miR-27a-3p-mediated regulation of FOXO1 and may serve as a prognostic biomarker and therapeutic target for ccRCC.
Collapse
MESH Headings
- ADAMTS9 Protein/antagonists & inhibitors
- ADAMTS9 Protein/genetics
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Computational Biology
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Female
- Forkhead Box Protein O1/antagonists & inhibitors
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Prognosis
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Er-lin Song
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Li Xing
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Liang Wang
- Medical Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Wen-ting Song
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang Province, P. R. China
| | - Dan-bin Li
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Yi Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Yi-wei Gu
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Ming-ming Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Wen-jun Ni
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| | - Peng Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Beijing 100036, P.R. China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Beijing 100036, P.R. China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical Academy, Beijing 100036, P.R. China
| | - Jie Yao
- Department of Urological Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, P.R. China
| | - Yang Chen
- Department of Hematology and Medical Oncology, Beijing ChuiYangLiu Hospital, Beijing 100022, P. R. China
| | - Rui-hua An
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, Heilongjiang Province, P. R. China
| |
Collapse
|
14
|
Liu Q, Xiao Y, Cai P, Li J, Li D. Long noncoding RNA DINO (damage induced noncoding) represses the development of gastric cancer by modulating p21 and Bcl-2 Associated X Protein (Bax) expression. J Cell Biochem 2019; 120:11190-11195. [PMID: 30775800 DOI: 10.1002/jcb.28394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
lncRNAs are responsible for a variety of diseases, including gastric cancer (GC). Many recent studies have reported that lncRNAs can serve as crucial regulators of various genes. Nevertheless, the biological function of lncRNA damage induced noncoding (DINO) remained poorly investigated in GC. Therefore, in our present study, the detailed role of DINO was investigated. It was manifested that DINO was significantly downregulated in GC tissues. Then, DINO was modulated by infecting LV-DINO or by LV-shRNA in BGC-823 and MGC-803 cells. Moreover, it was displayed that GC cell proliferation was suppressed by DINO overexpression, whereas silencing DINO increased cell proliferation significantly. For another, it was indicated that DINO dramatically induced apoptotic ratios of BGC-823 and MGC-803 cells, whereas the decrease of DINO depressed GC cell apoptosis. Apart from these, GC cell cycle progression was greatly blocked by LV-DINO. Furthermore, Western blot results displayed that upregulation of DINO elevated p21 expression and Bax expression. Oppositely, inhibition of DINO greatly suppressed p21 and Bax protein expression level. Taken these, DINO might exert a tumor inhibitory role in the progression of GC through modulating p21 and Bax.
Collapse
Affiliation(s)
- Qinqiang Liu
- Department of General Surgery, Xuzhou Hospital of Traditional Chinese medicine, Xuzhou, Jiangsu, China
| | - Yan Xiao
- Anaesthesiology department, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Peng Cai
- Department of General Surgery, Xuzhou Hospital of Traditional Chinese medicine, Xuzhou, Jiangsu, China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dawei Li
- Department of General Surgery, Xuzhou Hospital of Traditional Chinese medicine, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Zhang H, Luo C, Zhang G. LncRNA MCM3AP-AS1 Regulates Epidermal Growth Factor Receptor and Autophagy to Promote Hepatocellular Carcinoma Metastasis by Interacting with miR-455. DNA Cell Biol 2019; 38:857-864. [PMID: 31237446 DOI: 10.1089/dna.2019.4770] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been reported to be one of the major tumors in the world. There is a study indicating that MCM3AP-AS1 is an oncogenic factor in HCC; however, the mechanism by which MCM3AP-AS1 regulates HCC remains not fully understood. Reverse Transcription-quantitative PCR and Western blot approaches were used to detect mRNA and protein levels of various genes. To examine invasion of HCC cells and lymphatic vessel formation of human dermal lymphatic endothelial cells (HDLECs), we employed transwell invasion assay and lymphatic vessel assay. Bioinformatic analysis and luciferase reporter assay were used to establish direct interactions between MCM3AP-AS1 and miR-455. Besides, The Cancer Genome Atlas analyses of HCCs were performed to determine the association of MCM3AP-AS1 and epidermal growth factor receptor (EGFR) with overall survival. MCM3AP-AS1 knockdown impaired invasion of HCC cells and lymphatic vessel formation of HDLECs. MCM3AP-AS1 directly interacted with miR-455. Furthermore, miR-455 inhibitor-transfected HepG2 cells enhanced the invasion and lymphatic vessel formation abilities. The rescue experiments indicated that EGFR was critical for MCM3AP-AS1- and miR-455-regulated invasion and lymphatic vessel formation. More interestingly, autophagy-related genes (Beclin1, LC3 II/I, and ATG7) were abnormally regulated in miR-455 mimic or inhibitor HepG2 cells. miR-455 mimic inhibited cell invasion and lymphatic vessel formation, which was evidently abrogated by ATG7 overexpression. Finally, we analyzed The Cancer Genome Atlas data sets to test the upregulated expression levels of MCM3AP-AS1 and EGFR. In addition, the results showed that low levels of both genes facilitate survival of HCC patients. In this study, we reveal a novel mechanism underlying MCM3AP-AS1-induced HCC metastasis by regulating miR-455. The conclusions provide more insights into understanding mechanism underlying HCC and help development of therapeutical approaches for treating HCC.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Gastroenterology, Huangshi Central Hospital, Huangshi, P.R. China
| | - Cheng Luo
- Department of Gastroenterology, Huangshi Central Hospital, Huangshi, P.R. China
| | - Guoxing Zhang
- Department of Gastroenterology, Huangshi Central Hospital, Huangshi, P.R. China
| |
Collapse
|
16
|
The Association of HOTAIR with the Diagnosis and Prognosis of Gastric Cancer and Its Effect on the Proliferation of Gastric Cancer Cells. Can J Gastroenterol Hepatol 2019; 2019:3076345. [PMID: 31281803 PMCID: PMC6590613 DOI: 10.1155/2019/3076345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a group of noncoding RNA with the length of more than 200nt. They have been identified as important diagnostic and prognostic molecules for many cancers and play an important role in the development of cancers. However, their clinical value and roles in gastric cancer (GC) remain unclear. METHODS The expression levels of HOTAIR in 54 GC tissues and their matched adjacent nontumor tissues from GC patients and 24 normal mucosa or those with minimal gastritis as healthy controls were determined by qRT-PCR. The expression levels of HOTAIR in human GC cell lines and a normal gastric epithelium cell line were also assessed by qRT-PCR. The potential relationships between its level in GC tissues and the clinicopathological features were analyzed. Furthermore, a receiver operating characteristic (ROC) curve was constructed. Additionally, the correlation between this lncRNA and overall survival (OS) was analyzed. SiRNA transfection was used to silence the expression of HOTAIR in GC cells. And cell proliferation and cell cycle assays were employed to determine the effect of HOTAIR on GC cell growth. Western blot was performed for the detection of the P53, P21, and Bcl2 proteins. RESULTS The expression levels of HOTAIR were significantly upregulated in GC tissues and cell lines. Increased HOTAIR was associated with tumor differentiation, lymph node and distant metastasis, and clinical stage. Furthermore, the area under the ROC curve (AUC) was up to 0.8416 (95 % CI=0.7661 to 0.9170, P<0.0001). The sensitivity and specificity were 66.67 and 87.04%, respectively. The correlation between HOTAIR expression and overall survival (OS) was statistically significant. The hazard ratio was 2.681, and 95% CI of ratio was 1.370 to 5.248. In addition, knockdown of HOTAIR can inhibit GC cell growth and affect cell cycle distribution. And knockdown of HOTAIR could enhance the protein levels of P21 and P53. CONCLUSION The present study demonstrated that HOTAIR was highly expressed in GC tissues and may serve as a potential diagnostic and prognostic biomarker for GC. And HOTAIR promoted GC cell proliferation.
Collapse
|
17
|
Xiao SH, Li GX, Quan L. Long non-coding RNA BX357664 inhibits cell proliferation and metastasis in human lung cancer. Oncol Lett 2019; 17:2607-2614. [PMID: 30854036 PMCID: PMC6365958 DOI: 10.3892/ol.2019.9886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been investigated in human carcinogenesis. The lncRNA BX357664 has emerged as a novel lncRNA that was initially recognized by a microarray analysis. The present study aimed to identify the expression and functional roles of lncRNA BX357664 in lung cancer. The transcription level of BX357664 was initially revealed to be downregulated in clinical lung cancer tissues and in a series of lung cancer cell lines. Clinical data demonstrated that the high expression of BX357664 was associated with tumor size, distant metastasis and Tumor-Node-Metastasis stage. Following the overexpression of BX357664 in A549 and 95D cells, the potential of cells to form colonies, as well as the proliferation and motility abilities, were revealed to be decreased. Furthermore, the cell cycle was arrested in the G0/G1 phase by BX357664 modulation. Transwell analysis and a wound-healing assay also demonstrated that overexpression of BX357664 in A549 and 95D cells significantly inhibited cell migration and invasion. These data suggested that BX357664 inhibits cell proliferation and metastasis in lung cancer. The results of the present study provided evidence that BX357664 is a novel lncRNA that may aid in the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Shu-Hui Xiao
- Department of Clinical Laboratory Medicine, The People's Hospital of Linyi, Linyi, Shandong 276003, P.R. China
| | - Gong-Xiang Li
- Department of Clinical Laboratory Medicine, The People's Hospital of Linyi, Linyi, Shandong 276003, P.R. China
| | - Lingli Quan
- The First Department of Respiratory of Central Hospital of Zhuzhou, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
18
|
Wu L, Yin JH, Guan YY, Liu HL, Shen HL, Wang XJ, Han BH, Zhou MW, Gu XD. A long noncoding RNA MAP3K1-2 promotes proliferation and invasion in gastric cancer. Onco Targets Ther 2018; 11:4631-4639. [PMID: 30122954 PMCID: PMC6086095 DOI: 10.2147/ott.s168819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been implicated in several human cancers. The expression profile and underlying mechanism of the lncRNA MAP3K1-2 in gastric cancer (GC) are poorly understood. Methods Sixty-one patients with GC were recruited from Shanghai Baoshan Luo Dian Hospital (Shanghai, China). Tumor tissues and paired normal tissues (5 cm adjacent to the tumor) were obtained. Expression of lncRNA MAP3K1-2 in GC cell lines was examined using quantitative real-time polymerase chain reaction. Protein expression was detected using Western blot. Cell cycle analysis was assessed using flow cytometry. Cell proliferation was assessed using soft agar assays, and cell invasion was assessed using Transwell assays. Results The expression level of lncRNA MAP3K1-2 was upregulated in GC cells and markedly higher in poorly differentiated cell lines. Silencing treatment of lncRNA MAP3K1-2 significantly inhibited cell proliferation and invasion in GC. In addition, knockdown of lncRNA MAP3K1-2 significantly inhibited the function of important genes in the MAPK signaling pathway. Higher expression of lncRNA MAP3K1-2 was often associated with poorer prognosis in patients with GC. Conclusions lncRNA MAP3K1-2 is a critical effector in GC tumorigenesis and progression, representing novel therapeutic targets. High lncRNA MAP3K1-2 expression may serve as a novel independent prognostic marker for predicting the outcome of GC.
Collapse
Affiliation(s)
- Lei Wu
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Jia-Huan Yin
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Yu-Yu Guan
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Hai-Long Liu
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Hai-Long Shen
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Xiao-Jie Wang
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Bao-Hua Han
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Min-Wei Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China, ;
| | - Xiao-Dong Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China, ;
| |
Collapse
|
19
|
Guo L, Zhou Y, Chen Y, Sun H, Wang Y, Qu Y. LncRNA ASAP1-IT1 positively modulates the development of cholangiocarcinoma via hedgehog signaling pathway. Biomed Pharmacother 2018; 103:167-173. [PMID: 29653361 DOI: 10.1016/j.biopha.2018.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past decades, lncRNAs have attracted more and more attentions of researchers. It has been verified that lncRNAs can modulate multiple biological behaviors in various human cancers. LncRNA ASAP1-IT1 has been certified to be a tumor facilitator in several malignant tumors. This study aims to investigate the effects of dysregulated ASAP1-IT1 on biological processes of Cholangiocarcinoma. The high expression level of ASAP1-IT1 was tested in Cholangiocarcinoma tissues and cells with qRT-PCR. Upregulation of ASAP1-IT predicted the unfavorable prognosis for Cholangiocarcinoma patients. Next, ASAP1-IT1 was knocked down in cancerous cells for loss-of function assay. MTT, colony formation and transwell and western bot assays were performed to demonstrate the specific impacts of ASAP1-IT1 on proliferation, migration and EMT progression of Cholangiocarcinoma. Cells. As a results, the Cholangiocarcinoma progression was inhibited. Hedgehog signaling pathway has been discovered to be a treatment target in Cholangiocarcinoma. In this study, the interaction between ASAP1-IT1 and hedgehog pathway was specifically investigated. Smo and Gli1, two hedgehog-related proteins were examined in Cholangiocarcinoma cells. The results of qRT-PCR and western blot assay suggested that ASAP1-IT1 could positively modulate Smo and Gli1 in Cholangiocarcinoma. Finally, rescue assays were carried out to prove that ASAP1-IT1 could improve Cholangiocarcinoma progression and development via hedgehog signaling pathway.
Collapse
Affiliation(s)
- Linqi Guo
- Department of General surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Yu Zhou
- Department of Tumor surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Ying Chen
- Department of Critical care medicine, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Huawei Sun
- Department of Radiochemotherapy, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China
| | - Yue Wang
- Department of pharmacology and toxicology, Wright State University, Fairborn, OH, 45435, USA
| | - Yikun Qu
- Department of General surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City 154003, China.
| |
Collapse
|
20
|
He B, Zeng J, Chao W, Chen X, Huang Y, Deng K, Huang Z, Li J, Dai M, Chen S, Huang H, Dai S. Serum long non-coding RNAs MALAT1, AFAP1-AS1 and AL359062 as diagnostic and prognostic biomarkers for nasopharyngeal carcinoma. Oncotarget 2018; 8:41166-41177. [PMID: 28467811 PMCID: PMC5522198 DOI: 10.18632/oncotarget.17083] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/22/2017] [Indexed: 12/23/2022] Open
Abstract
Circulating RNAs in serum, plasma or other body liquid have emerged as useful and highly promising biomarkers for noninvasive diagnostic application. Herein, we aimed to establish a serum long non-coding RNAs (lncRNAs) signature for diagnosing nasopharyngeal carcinoma (NPC). In this study, we recruited a cohort of 101 NPC patients, 20 patients with chronic nasopharyngitis (CN), 20 EBV carriers (EC) and 101 healthy controls. qRT-PCR was performed with NPC cells and serum samples to screen a pool of 38 NPC-related lncRNAs obtained from the LncRNADisease database. A profile of three circulating lncRNAs (MALAT1, AFAP1-AS1 and AL359062) was established for NPC diagnosis. By Receiver Operating Characteristic (ROC) curve analysis, this three-lncRNA signature showed high accuracy in discriminating NPC from healthy controls (AUC = 0.918), CN (AUC = 0.893) or EC (AUC = 0.877). Furthermore, high levels of these three lncRNAs were closely related to advanced NPC tumor node metastasis stages and EBV infection. Serum levels of these three lncRNAs declined significantly in patients after therapy. Our present study indicates that circulating MALAT1, AFAP1-AS1 and AL359062 may represent novel serum biomarkers for NPC diagnosis and prognostic prediction after treatment.
Collapse
Affiliation(s)
- Baoyu He
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jianchao Zeng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Wei Chao
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Xiaoli Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Yujie Huang
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Kaifeng Deng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Zhizhuo Huang
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jinwan Li
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Meiyu Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shaojun Chen
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| |
Collapse
|
21
|
Dong X, Chen R, Lin H, Lin T, Pan S. lncRNA BG981369 Inhibits Cell Proliferation, Migration, and Invasion, and Promotes Cell Apoptosis by SRY-Related High-Mobility Group Box 4 (SOX4) Signaling Pathway in Human Gastric Cancer. Med Sci Monit 2018; 24:718-726. [PMID: 29398692 PMCID: PMC5810617 DOI: 10.12659/msm.905965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Human gastric cancer (GC) is a leading primary cause of cancer-associated deaths in both males and females worldwide. However, there are few effective diagnostic and therapeutic measures for GC patients due to the complicated underlying mechanisms of GC. Recently, increasing research has indicated that lncRNAs may play a critical role in the progression of GC. Material/Methods AI769947, AK054978, DB077273, BG981369, AK054588, and AF131784 expressions were analyzed by qRT-PCR assay in GC tissues and corresponding normal tissues (n=44). BG981369 expression was detected by qRT-PCR assay in GC cells. BG981369 was overexpressed and silenced in AGS and SNU-5 cells. The proliferation ability was detected by MTT and colony formation assays. Cell cycle distribution and cell apoptosis rate were analyzed by flow cytometry. The migration and invasion abilities were measured by Transwell assay. In addition, SOX4 expression was analyzed by qRT-PCR in GC tissues. The correlation between SOX4 and BG981369 was analyzed by Pearson analysis. Results The results indicated that lncRNA BG981369 was significantly higher in GC tissues than in normal tissues. Overexpression of BG981369 inhibited the proliferation, migration, and invasion and promoted apoptosis of gastric adenocarcinoma (AGS) cells, and silencing of BG981369 promoted proliferation, migration, and invasion, and inhibited cell apoptosis of SNU-5 cells. Furthermore, we found that SOX4 may act as a downstream mediator of BG981369, suggesting that BG981369 inhibits proliferation, migration, and invasion, and promotes apoptosis by targeting SOX4 in the GC cell lines. Conclusions Our results suggest that BG981369 and SOX4 are potentially effective therapeutic targets for GC.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Haihua Lin
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Tiesu Lin
- Department of Gastroenterology and Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Shuang Pan
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
22
|
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18:558-576. [PMID: 27345524 PMCID: PMC5862301 DOI: 10.1093/bib/bbw060] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 02/07/2023] Open
Abstract
LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA–disease associations and predicting potential human lncRNA–disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | | | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
23
|
Downregulated long non-coding RNA TCONS_00068220 upregulates apoptosis in gastric cancer cells. Oncol Lett 2017; 14:6143-6150. [PMID: 29113259 DOI: 10.3892/ol.2017.6977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a fundamental class of biological effect or molecules that perform pivotal functions in the regulation of the genome. With advances in bioinformatics and genomics, extensive identification and characterization of lncRNAs is now possible. They regulate cellular growth, differentiation and apoptosis. Dysregulation of lncRNAs has been associated with numerous types of human cancer. In the present study, the expression profile of differentially expressed genes (DEGs) and lncRNAs in gastric cancer (GC) samples and normal tissue samples was evaluated with bioinformatics. The biological functions of the predicted lncRNA TCONS_00068220 were focused on; the DEGs co-expressed with TCONS_00068220 were enriched in cancer-associated pathways. TCONS_00068220 was demonstrated to be upregulated in GC tissues and cell lines compared with normal controls. In addition, an increased rate of apoptosis was observed in NCI-N87 cells following transfection with small interfering RNA against TCONS_00068220. These data suggest that TCONS_00068220 may be associated with the pathogenesis of GC, and it may serve as a potential therapeutic target.
Collapse
|
24
|
Liu C, Pan C, Cai Y, Wang H. Interplay Between Long Noncoding RNA ZEB1-AS1 and miR-200s Regulates Osteosarcoma Cell Proliferation and Migration. J Cell Biochem 2017; 118:2250-2260. [PMID: 28075045 DOI: 10.1002/jcb.25879] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
In our previous study, we found long noncoding RNA ZEB1-AS1 is upregulated and functions as an oncogene in osteosarcoma. MiR-200 family (miR-200s) functions as tumor suppressor via directly targeting ZEB1 in various cancers. In this study, we further investigate the potential interplay between ZEB1-AS1, miR-200s, and ZEB1 in osteosarcoma. Our results showed that ZEB1-AS1 functions as a molecular sponge for miR-200s and relieves the inhibition of ZEB1 caused by miR-200s. ZEB1-AS1 and miR-200s reciprocally negatively regulate each other. MiR-200s are downregulated in osteosarcoma tissues, and negatively correlated with ZEB1-AS1 and ZEB1 expression levels in osteosarcoma. Functional experiments showed that consistent with ZEB1-AS1 depletion, miR-200s overexpression and ZEB1 depletion both inhibit osteosarcoma cell proliferation and migration. Overexpression of miR-200s partially abolished the effects of ZEB1-AS1 on osteosarcoma cell proliferation and migration. Moreover, the combination of ZEB1-AS1 depletion and miR-200s overexpression significantly inhibits osteosarcoma cell proliferation and migration. In conclusion, this study revealed a novel regulatory mechanism between ZEB1-AS1, miR-200s, and ZEB1. The interplay between ZEB1-AS1 and miR-200s contributes to osteosarcoma cell proliferation and migration, and targeting this interplay could be a promising strategy for osteosarcoma treatment. J. Cell. Biochem. 118: 2250-2260, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Chunqin Pan
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yanqun Cai
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Haibao Wang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
25
|
Li H, Zhu H, Zhou Y, Wang H, Niu Z, Shen Y, Lv L. Long non-coding RNA MSTO2P promotes the proliferation and colony formation in gastric cancer by indirectly regulating miR-335 expression. Tumour Biol 2017; 39:1010428317705506. [PMID: 28618927 DOI: 10.1177/1010428317705506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs are emerging as new players in gene regulation, but whether long non-coding RNAs influence the expression of microRNA is unclear. The expression levels of misato family member 2, pseudogene were significantly associated with lymphatic metastasis and distal metastasis in 80 paired gastric cancer tissues using real-time quantitative reverse transcription polymerase chain reaction experiments. The effects of long non-coding RNA misato family member 2, pseudogene were assessed by overexpressing or downexpressing long non-coding RNA misato family member 2, pseudogene in gastric cancer cells. Long non-coding RNA misato family member 2, pseudogene promoted gastric cancer cell growth, colony formation, migration, and invasion in gastric cancer cells. Long non-coding RNA misato family member 2, pseudogene influenced biologic functions in gastric cancer cells via indirectly regulating the activation of miR-335. Our results reveal long non-coding RNA misato family member 2, pseudogene as an oncogenic long non-coding RNA that promotes cell growth and invasion. Therefore, long non-coding RNAs might function as key regulatory hubs in gastric cancer progression.
Collapse
Affiliation(s)
- Han Li
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Hua Zhu
- 2 Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yanbing Zhou
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Haibo Wang
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Zhaojian Niu
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yi Shen
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Liang Lv
- 1 Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
26
|
Wu F, Li J, Du X, Zhang W, Lei P, Zhang Q. Long non‑coding RNA AB019562 promotes cell proliferation and metastasis in human hepatocellular carcinoma. Mol Med Rep 2017; 16:69-74. [PMID: 28534955 PMCID: PMC5482116 DOI: 10.3892/mmr.2017.6612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence has supported the prognostic and therapeutic values of long non-coding RNAs (LncRNAs) in human tumorigenesis. Hepatocellular carcinoma (HCC), as one of the most refractory diseases, continues to warrant investigation for novel clues to enable early diagnosis. In the present study, the role of LncRNA AB019562 in cell proliferation and metastasis was investigated in HCC. Reverse transcription-quantitative polymerase chain reaction analysis was performed to determine the expression of AB019562 in clinical HCC samples and cultured HCC cells. In addition, a specific small interfering RNA against AB019562 was designed and transfected into HCC cells. A3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and a transwell assay were used to assess the effects of AB019562 knockdown on cell proliferation and metastasis, respectively. The results revealed that the expression of AB019562 was increased 4-fold in the clinical HCC tissues, compared with adjacent non-cancerous tissue counterparts. AB019562 was differentially expressed in the HCC cell lines. The knockdown of AB019562 reduced the rate of cell proliferation by 28.6% in HepG2 cells and by 24% in SMMC-7721 cells. Cell cycle assays revealed that the proportion of cells in the G0/G1 phase was significantly increased, whereas those in the S and G2/M phases were decreased in the AB019562-knockdowncells. The results of the transwell assay showed that the knockdown of AB019562 inhibited cell migration abilities by up to 67% in the HepG2 cells and 63% in the SMMC-7721 cells, and significantly suppressed invasive abilities by up to 75% in the HepG2 cells and 60% in the SMMC-7721 cells. Furthermore, AB019562 knockdown increased the apoptotic rates of the two cell lines and activated the expression of caspase-3, but not caspase-8. These data demonstrated the pro-oncogenic properties of AB019562 and suggested that AB019562 may serve as a novel biomarker for the diagnosis and treatment of patients with HCC.
Collapse
Affiliation(s)
- Fan Wu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, P.R. China
| | - Jie Li
- Department of Cardiology, Tianjin Hospital, Tianjin 300202, P.R. China
| | - Xin Du
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, P.R. China
| | - Weisan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, P.R. China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, P.R. China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, P.R. China
| |
Collapse
|
27
|
Shi X, Zhang H, Wang M, Xu X, Zhao Y, He R, Zhang M, Zhou M, Li X, Peng F, Shi C, Shen M, Wang X, Guo X, Qin R. LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells. Oncotarget 2017; 8:58394-58404. [PMID: 28938565 PMCID: PMC5601661 DOI: 10.18632/oncotarget.16880] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
We investigated the role of actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) lncRNA in promoting cholangiocarcinoma (CCA). qRT-PCR analysis of patient samples showed that AFAP1-AS1 expression was higher in CCA tumors than matched adjacent non-tumor tissue. AFAP1-AS1 levels were also higher in CCA cell lines (HuCCT1 and TFK-1) than a normal biliary epithelium cell line (HIBEpic). AFAP1-AS1 knockdown in CCA cell lines using shAFAP1-AS1 reduced cell proliferation and colony formation in CCK-8 and colony formation assays, respectively. Cell cycle analysis demonstrated that AFAP1-AS1 knockdown resulted in G0/G1 cell cycle arrest and inhibition of S-G2/M transition compared to the controls. CCA cells transfected with shAFAP1-AS1 also exhibited reduced metastasis and invasiveness in Transwell and wound healing assays. This was further confirmed in xenograft experiments with nude mice using CCA cells transfected with shAFAP1-AS1 or control shRNA. AFAP1-AS1 knockdown cells produced smaller tumors, demonstrating that AFAP1-AS1 promotes tumor growth in vivo. AFAP1-AS1 knockdown also increased expression of actin filament associated protein 1 (AFAP1) and reduced cell stress filament integrity, as determined from western blot and immunofluorescence assays, respectively. These findings indicate that AFAP1-AS1 exerts oncogenic effects in CCA. We postulate that AFAP1-AS1 is a potentially useful diagnostic and prognostic biomarker and therapeutic target for CCA.
Collapse
Affiliation(s)
- Xiuhui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Xu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengjian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Zhao L, Han T, Li Y, Sun J, Zhang S, Liu Y, Shan B, Zheng D, Shi J. The lncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4. FASEB J 2016; 31:893-903. [PMID: 27871067 DOI: 10.1096/fj.201600994r] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in cellular processes, including the development, proliferation, and migration of cancer cells. We have demonstrated in a prior study that small nucleolar RNA host gene 5 (SNHG5) is dysregulated in gastric cancer (GC). To further explore the underlying mechanisms of SNGH5 function in the development of GC, in this study, we screened the microRNAs interacting with SNHG5 and elucidated their roles in GC. We showed that SNHG5 contains a putative miR-32-binding site and that deletion of this site abolishes the responsiveness to miR-32. Suppression of SNHG5 expression by miR-32 was found to be Argonaute (Ago)2-dependent. Immunoprecipitation showed that SNHG5 could be pulled down from the Ago-2 complex with miR-32. Furthermore, it was reported that Kruppel-like factor 4 (KLF4) is a target gene of miR-32. In agreement with SNHG5 being a decoy for miR-32, we showed that KLF4 suppression by miR-32 could be partially rescued by SNHG5 overexpression, whereas miR-32 mimic rescued SNHG5 overexpression-mediated suppression of GC cell migration. In addition, we identified a negative correlation between the expression of SNHG5 and miR-32 in GC tissues. Furthermore, KLF4 expression was significantly downregulated in GC specimens, and a negative correlation between miR-32 and KLF4 expression and a positive correlation between KLF4 and SNHG5 expression levels were detected. Overall, this study demonstrated, for the first time, that the SNHG5/miR-32/KLF4 axis functions as an important player in GC cell migration and potentially contributes to the improvement of GC diagnosis and therapy.-Zhao, L., Han, T., Li, Y., Sun, J., Zhang, S., Liu, Y., Shan, B., Zheng D., Shi, J. The lncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4.
Collapse
Affiliation(s)
- Lianmei Zhao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and.,Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Taotao Han
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Yanshuang Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Jiazeng Sun
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Shang Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Yanxin Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dexian Zheng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| |
Collapse
|
29
|
Chen F, Mo J, Zhang L. Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription. Tumour Biol 2016; 37:13403-13412. [DOI: 10.1007/s13277-016-5256-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
|
30
|
Lu X, Zhou C, Li R, Liang Z, Zhai W, Zhao L, Zhang S. Critical role for the long non-coding RNA AFAP1-AS1 in the proliferation and metastasis of hepatocellular carcinoma. Tumour Biol 2016; 37:9699-707. [PMID: 26803513 PMCID: PMC4990603 DOI: 10.1007/s13277-016-4858-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has indicated that dysregulation of long non-coding RNAs (lncRNAs) can contribute to the progression and metastasis of human cancer, including HCC. Previous studies have shown that the lncRNA AFAP1-AS1 plays a critical role in cancer. However, the roles of AFAP1-AS1 in HCC remain to be determined. In the present study, AFAP1-AS1 was found to be increased in HCC tissues, and high AFAP1-AS1 expression was associated with tumor size, TNM stage, vascular invasion, and poor prognosis. Silencing of AFAP1-AS1 significantly reduced cell proliferation, clonal growth, cell migration, and invasion and increased apoptosis in vitro. Furthermore, AFAP1-AS1 silencing markedly reduced tumor growth in a murine allograft model in vivo. The results suggested that AFAP1-AS1 is important in HCC development and serves as a therapeutic target of HCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/secondary
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Staging
- Prognosis
- RNA, Long Noncoding/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xu Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
| | - Chuang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
| | - Renfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
| | - Zhiwei Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
| | - Longshuan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
31
|
Li Z, Shen J, Chan MTV, Wu WKK. TUG1: a pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif 2016; 49:471-5. [PMID: 27339553 DOI: 10.1111/cpr.12269] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group greater than 200 nucleotides in length. An increasing number of studies has shown that lncRNAs play important roles in diverse cellular processes, including proliferation, differentiation, apoptosis, invasion and chromatin remodelling. In this regard, deregulation of lncRNAs has been documented in human cancers. TUG1 is a recently identified oncogenic lncRNA whose aberrant upregulation has been detected in different types of cancer, including B-cell malignancies, oesophageal squamous cell carcinoma, bladder cancer, hepatocellular carcinoma and osteosarcoma. In these malignancies, knock-down of TUG1 has been shown to suppress cell proliferation, invasion and/or colony formation. Interestingly, TUG1 has been found to be downregulated in non-small cell lung carcinoma, indicative of its tissue-specific function in tumourigenesis. Pertinent to clinical practice, TUG1 may act as a prognostic biomarker for tumours. In this review, we summarize current knowledge concerning the role of TUG1 in tumour progression and discuss mechanisms associated with it.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Deng K, Wang H, Guo X, Xia J. The cross talk between long, non-coding RNAs and microRNAs in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:111-6. [PMID: 26621794 DOI: 10.1093/abbs/gmv120] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common malignant diseases and remains the second leading cause of cancer-related mortality worldwide. Although great effort has been made during the past decades to facilitate the early detection and treatment of gastric cancer, the prognosis is not yet satisfactory and the underlying molecular mechanisms of gastric cancer pathogenesis are not fully understood. Meanwhile, non-coding RNAs have been established as key players in regulating various biological and pathological processes, such as cell-cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. Furthermore, numerous studies have also revealed a complicated interplay among different species of non-coding RNAs; therefore, the cross-regulation between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) has begun to emerge. This lncRNA-miRNA cross talk, which has attracted increasing attention in recent years, is involved in a great number of human diseases including gastric cancer. In this review, we summarize the latest research progress of the interactions between lncRNAs and miRNAs, highlighting their influences on the development and progression of gastric cancer to provide novel approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Xiaoqiang Guo
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| |
Collapse
|
33
|
Chen X. KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci Rep 2015; 5:16840. [PMID: 26577439 PMCID: PMC4649494 DOI: 10.1038/srep16840] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/21/2015] [Indexed: 12/28/2022] Open
Abstract
Accumulating experimental studies have demonstrated important associations between alterations and dysregulations of lncRNAs and the development and progression of various complex human diseases. Developing effective computational models to integrate vast amount of heterogeneous biological data for the identification of potential disease-lncRNA associations has become a hot topic in the fields of human complex diseases and lncRNAs, which could benefit lncRNA biomarker detection for disease diagnosis, treatment, and prevention. Considering the limitations in previous computational methods, the model of KATZ measure for LncRNA-Disease Association prediction (KATZLDA) was developed to uncover potential lncRNA-disease associations by integrating known lncRNA-disease associations, lncRNA expression profiles, lncRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity. KATZLDA could work for diseases without known related lncRNAs and lncRNAs without known associated diseases. KATZLDA obtained reliable AUCs of 7175, 0.7886, 0.7719 in the local and global leave-one-out cross validation and 5-fold cross validation, respectively, significantly improving previous classical methods. Furthermore, case studies of colon, gastric, and renal cancer were implemented and 60% of top 10 predictions have been confirmed by recent biological experiments. It is anticipated that KATZLDA could be an important resource with potential values for biomedical researches.
Collapse
Affiliation(s)
- Xing Chen
- National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, 100190, China.,Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
34
|
Gong Z, Yang Q, Zeng Z, Zhang W, Li X, Zu X, Deng H, Chen P, Liao Q, Xiang B, Zhou M, Li X, Li Y, Xiong W, Li G. An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma. Tumour Biol 2015; 37:3683-95. [PMID: 26462838 DOI: 10.1007/s13277-015-4156-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
It has been reported that p53 dysfunction is closely related to the carcinogenesis of nasopharyngeal carcinoma (NPC). Recently, an increasing body of evidence has indicated that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) participate in p53-associated signaling pathways and, in addition to mRNAs, form a complex regulation network to promote tumor occurrence and progression. The aim of this study was to elucidate the p53-regulated miRNAs, mRNAs, and lncRNAs and their regulating networks in NPC. Firstly, we overexpressed p53 in the NPC cell line HNE2 and performed transcriptomic gene expression profiling (GEP) analysis, which included miRNAs, mRNAs, and lncRNAs, using microarray technology at 0, 12, 24, and 48 h after transfection. There were 38 miRNAs (33 upregulated and 5 downregulated), 2107 mRNAs (296 upregulated and 1811 downregulated), and 1190 lncRNAs (133 upregulated and 1057 downregulated) that were significantly dysregulated by p53. Some of the dysregulated molecules were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Then, we integrated previously published miRNAs, mRNAs, and lncRNAs GEP datasets from NPC biopsies to investigate the expression of these p53 regulated molecules and found that 7 miRNAs, 218 mRNAs, and 101 lncRNAs regulated by p53 were also differentially expressed in NPC tissues. Finally, p53-regulated miRNA, mRNA, and lncRNA networks were constructed using bioinformatics methods. These miRNAs, mRNAs, and lncRNAs may participate in p53 downstream signaling pathways and play important roles in the carcinogenesis of NPC. Thorough investigations of their biological functions and regulating relationships will provide a novel view of the p53 signaling pathway, and the restoration of p53 functioning or its downstream gene regulating network is potentially of great value in treating NPC patients.
Collapse
Affiliation(s)
- Zhaojian Gong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qian Yang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Nursing, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, China
| | - Zhaoyang Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuyu Zu
- Clinical Research Institution, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|