1
|
Ding R, Liao L, Chen J, Zhang J, Cai S, Miao X, Li T, Zhao J, Chen Q, Cheng X, Deng J. Downregulation of ferroptosis-related Genes can regulate the invasion and migration of osteosarcoma cells. Sci Rep 2025; 15:17582. [PMID: 40399425 PMCID: PMC12095786 DOI: 10.1038/s41598-025-02319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Osteosarcoma (OS) is a prevalent form of bone cancer among younger people, particularly children and adolescents. Ferroptosis is a non-apoptotic cell death identified by increased levels of iron-dependent lipid peroxidation. This study was designed to develop a prognostic model based on differentially expressed genes (DEGs) associated with ferroptosis and examined the functions of ferroptosis-related genes (FRGs) in OS cells. Gene expression profiles in OS were retrieved from TARGET and GEO databases, while GTEx provided data for healthy tissues. Prognostic genes were identified through bioinformatics analysis and data integration. In vitro experiments, cell cultures, qRT-PCR, immunohistochemistry (IHC), cell transfection, Edu assays, DHE assays, migration, and invasion assays validated the prognostic model and explored the functional role of FRGs in OS cells. Univariate Cox regression analysis demonstrated that 12 DEGs were differentially expressed. Based on four FRGs in OS constructed a risk-scoring model. The high-risk (HR) group showed a considerably lower OS rate than the low-risk (LR) group (p < 0.001 in the TARGET and p < 0.05 in the GSE21257 cohorts). A risk score was validated as an independent predictive factor for OS via multivariate Cox regression. Functional analysis shows that these FRGs affect the occurrence of ferroptosis by influencing the intracellular ROS levels and play a regulatory role in the proliferation, migration, and infiltration of OS cells. The findings suggested that four FRGs demonstrate significant prognostic value in OS, offering potential insights into novel therapeutic targets for OS treatment.
Collapse
Affiliation(s)
- Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Le Liao
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiahui Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Shenghao Cai
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Jiangminghao Zhao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| | - Jianjian Deng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Ding Y, Chen Q. Wnt/β-catenin signaling pathway: an attractive potential therapeutic target in osteosarcoma. Front Oncol 2025; 14:1456959. [PMID: 40028002 PMCID: PMC11867957 DOI: 10.3389/fonc.2024.1456959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/24/2024] [Indexed: 03/05/2025] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy in children and adolescents, and although current neoadjuvant chemotherapy has shown efficacy against OS, the long-term survival rate for patients with OS remains low, highlighting the need to find more effective treatments. In cancer cells, abnormal activation of signaling pathways can widely affect cell activity from growth and proliferation to apoptosis, invasion and metastasis. Wnt/β-catenin is a complex and unique signaling pathway that is considered to be one of the most important carcinogenic pathways in human cancer. Research have confirmed that the Wnt/β-catenin signaling pathway is an important driving factor for the occurrence and development of osteosarcoma, and abnormal activation of this pathway can promote the pathological processes of cell proliferation, invasion, migration, tumor angiogenesis and chemical resistance of osteosarcoma. However, inhibition of Wnt/β-catenin signaling pathway can effectively inhibit or reverse the above pathological processes. Therefore, manipulating the expression or function of the Wnt/β-catenin pathway may be a potential targeted pathway for the treatment of OS. In this review, we describe the characteristics of the Wnt/β-catenin signaling pathway and summarize the role and mechanism of this pathway in OS. This paper discusses the therapeutic significance of inhibiting or targeting Wnt/β-catenin pathway in OS and the shortcomings of current studies on this pathway in OS and the problems to be solved. This review helps us to understand the role of Wnt/β-catenin on OS, and provides a theoretical basis and new ideas for targeting Wnt/β-catenin pathway as a therapeutic target for OS.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| |
Collapse
|
3
|
Lai JQ, Zhao LL, Hong C, Zou QM, Su JX, Li SJ, Zhou XF, Li ZS, Deng B, Cao J, Qi Q. Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis. Acta Pharmacol Sin 2024; 45:1715-1726. [PMID: 38684798 PMCID: PMC11272787 DOI: 10.1038/s41401-024-01258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Colorectal cancer (CRC) is a prevalent form of gastrointestinal malignancy with challenges in chemotherapy resistance and side effects. Effective and low toxic drugs for CRC treatment are urgently needed. Ferroptosis is a novel mode of cell death, which has garnered attention for its therapeutic potential against cancer. Baicalein (5, 6, 7-trihydroxyflavone) is the primary flavone extracted from the dried roots of Scutellaria baicalensis that exhibits anticancer effects against several malignancies including CRC. In this study, we investigated whether baicalein induced ferroptosis in CRC cells. We showed that baicalein (1-64 μM) dose-dependently inhibited the viability of human CRC lines HCT116 and DLD1. Co-treatment with the ferroptosis inhibitor liproxstatin-1 (1 μM) significantly mitigated baicalein-induced CRC cell death, whereas autophagy inhibitor chloroquine (25 μM), necroptosis inhibitor necrostatin-1 (10 μM), or pan-caspase inhibitor Z-VAD-FMK (10 μM) did not rescue baicalein-induced CRC cell death. RNA-seq analysis confirmed that the inhibitory effect of baicalein on CRC cells is associated with ferroptosis induction. We revealed that baicalein (7.5-30 μM) dose-dependently decreased the expression levels of GPX4, key regulator of ferroptosis, in HCT116 and DLD1 cells by blocking janus kinase 2 (JAK2)/STAT3 signaling pathway via direct interaction with JAK2, ultimately leading to ferroptosis in CRC cells. In a CRC xenograft mouse model, administration of baicalein (10, 20 mg/kg, i.g., every two days for two weeks) dose-dependently inhibited the tumor growth with significant ferroptosis induced by inhibiting the JAK2/STAT3/GPX4 axis in tumor tissue. This study demonstrates that ferroptosis contributes to baicalein-induced anti-CRC activity through blockade of the JAK2/STAT3/GPX4 signaling pathway, which provides evidence for the therapeutic application of baicalein against CRC.
Collapse
Affiliation(s)
- Jian-Qin Lai
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Le-le Zhao
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chao Hong
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qiu-Ming Zou
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jin-Xuan Su
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Li
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Feng Zhou
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zi-Sheng Li
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Bo Deng
- The Affiliated Shunde Hospital of Jinan University, Foshan, 528305, China.
| | - Jie Cao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Meng J, Du H, Lu J, Wang H. Construction and validation of a predictive nomogram for ferroptosis-related genes in osteosarcoma. J Cancer Res Clin Oncol 2023; 149:14227-14239. [PMID: 37555953 DOI: 10.1007/s00432-023-05225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Ferroptosis is a new type of cellular regulation of necrosis that has attracted great attention in recent years, which is different from the traditional mode of autophagy, apoptosis, and necrosis. Studies suggest that ferroptosis is key to the occurrence and development of tumors. METHODS Here, we investigated the prognostic significance of ferroptosis-related genes (FRGs) in osteosarcoma (OS) using RNA transcriptome data from 88 OS samples collected from the UCSC Xena platform. We defined the OS sample from the UCSC platform as the training cohort and the GEO dataset (GSE21257 and GSE16091) as the validation cohorts. We assessed 73 up-regulated and 63 down-regulated FRGs. We divided patients from the UCSC database into groups at high risk and low risk and built a prognostic risk model to assess prognosis using five FRGs: MT1G, G6PD, ARNTL, BNIP3, and SQLE. RESULTS High-risk OS patients presented a lower survival rate. These results were confirmed in the validation groups. In the training group, the areas under the ROC curves (AUC) were as follows: 0.880 for 1 year, 0.833 for 3 years, and 0.818 for 5 years. In the GSE21257 validation cohort, the AUC were as follows: 0.770 for 1 year, 0.641 for 3 years, and 0.632 for 5 years survival, and in the GSE16091 were 0.729 for 1 year, 0.663 for 3 years, and 0.735 for 5 years survival. CONCLUSIONS These findings suggest that FRGs are associated with the prognosis of osteosarcoma. Moreover, our prognostic risk model can predict overall survival in osteosarcoma. This provides new ideas for the clinical diagnosis and personalized treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huawei Du
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Morshed AKMH, Paul S, Hossain A, Basak T, Hossain MS, Hasan MM, Hasibuzzaman MA, Rahaman TI, Mia MAR, Shing P, Sohel M, Bibi S, Dey D, Biswas P, Hasan MN, Ming LC, Tan CS. Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives. Cancers (Basel) 2023; 15:2128. [PMID: 37046789 PMCID: PMC10093079 DOI: 10.3390/cancers15072128] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Despite significant therapeutic advancements for cancer, an atrocious global burden (for example, health and economic) and radio- and chemo-resistance limit their effectiveness and result in unfavorable health consequences. Natural compounds are generally considered safer than synthetic drugs, and their use in cancer treatment alone, or in combination with conventional therapies, is increasingly becoming accepted. Interesting outcomes from pre-clinical trials using Baicalein in combination with conventional medicines have been reported, and some of them have also undergone clinical trials in later stages. As a result, we investigated the prospects of Baicalein, a naturally occurring substance extracted from the stems of Scutellaria baicalensis Georgi and Oroxylum indicum Kurz, which targets a wide range of molecular changes that are involved in cancer development. In other words, this review is primarily driven by the findings from studies of Baicalein therapy in several cancer cell populations based on promising pre-clinical research. The modifications of numerous signal transduction mechanisms and transcriptional agents have been highlighted as the major players for Baicalein's anti-malignant properties at the micro level. These include AKT serine/threonine protein kinase B (AKT) as well as PI3K/Akt/mTOR, matrix metalloproteinases-2 & 9 (MMP-2 & 9), Wnt/-catenin, Poly(ADP-ribose) polymerase (PARP), Mitogen-activated protein kinase (MAPK), NF-κB, Caspase-3/8/9, Smad4, Notch 1/Hes, Signal transducer and activator of transcription 3 (STAT3), Nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap 1), Adenosine monophosphate-activated protein kinase (AMPK), Src/Id1, ROS signaling, miR 183/ezrin, and Sonic hedgehog (Shh) signaling cascades. The promise of Baicalein as an anti-inflammatory to anti-apoptotic/anti-angiogenic/anti-metastatic medicinal element for treating various malignancies and its capability to inhibit malignant stem cells, evidence of synergistic effects, and design of nanomedicine-based drugs are altogether well supported by the data presented in this review study.
Collapse
Affiliation(s)
- A K M Helal Morshed
- Pathology and Pathophysiology, Academy of Medical Science, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Supti Paul
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arafat Hossain
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tuli Basak
- Department of Genetic Engineering and Biotechnology, Faculty of Science and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Md. Sanower Hossain
- Centre for Sustainability of Ecosystem and Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Gambang, Kuantan 26300, Malaysia
| | - Md. Mehedi Hasan
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Al Hasibuzzaman
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Pollob Shing
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia;
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| |
Collapse
|
6
|
Yang L, Liu J, Liu S. Clinical significance and immune landscape of a novel ferroptosis-related prognosis signature in osteosarcoma. BMC Cancer 2023; 23:229. [PMID: 36899330 PMCID: PMC10007778 DOI: 10.1186/s12885-023-10688-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Osteosarcoma is a malignant tumor that usually occurs in adolescents aged 10-20 years and is associated with poor prognosis. Ferroptosis is an iron-dependent cell death mechanism that plays a vital role in cancer. METHODS Osteosarcoma transcriptome data were downloaded from the public database TARGET and from previous studies. A prognostic risk score signature was constructed using bioinformatics analysis, and its efficacy was determined by analyzing typical clinical features. The prognostic signature was then validated with external data. Differences in immune cell infiltration between high- and low-risk groups were analyzed. The potential of the prognostic risk signature as a predictor of immunotherapy response was evaluated using the GSE35640 (melanoma) dataset. Five key genes expression were measured by real-time PCR and western blot in human normal osteoblasts and osteosarcoma cells. Moreover, malignant biological behaviors of osteosarcoma cells were tested by modulating gene expression level. RESULTS We obtained 268 ferroptosis-related genes from the online database FerrDb and published articles. Transcriptome data and clinical information of 88 samples in the TARGET database were used to classify genes into two categories using clustering analysis, and significant differences in survival status were identified. Differential ferroptosis-related genes were screened, and functional enrichment showed that they were associated with HIF-1, T cells, IL17, and other inflammatory signaling pathways. Prognostic factors were identified by univariate Cox regression and LASSO analysis, and a 5-factor prognostic risk score signature was constructed, which was also applicable for external data validation. Experimental validation indicated that the mRNA and protein expression level of MAP3K5, LURAP1L, HMOX1 and BNIP3 decreased significantly, though meanwhile MUC1 increased in MG-63 and SAOS-2 cells compared with hFOB1.19 cells. Cell proliferation and migration ability of SAOS-2 were affected based on alterations of signature genes. CONCLUSIONS Significant differences in immune cell infiltration between high- and low-risk groups indicated that the five ferroptosis-related prognostic signature was constructed and could be used to predict the response to immunotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
7
|
Rahmani AH, Almatroudi A, Khan AA, Babiker AY, Alanezi M, Allemailem KS. The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways. Molecules 2022; 27:8023. [PMID: 36432119 PMCID: PMC9692503 DOI: 10.3390/molecules27228023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The roles of medicinal plants or their purified bioactive compounds have attracted attention in the field of health sciences due to their low toxicity and minimal side effects. Baicalein is an active polyphenolic compound, isolated from Scutellaria baicalensis, and plays a significant role in the management of different diseases. Epidemiologic studies have proven that there is an inverse association between baicalein consumption and disease severity. Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation. Additionally, the anticancer potential of baicalein is chiefly mediated through the modulation of various cell-signaling pathways, such as the induction of apoptosis, autophagy, cell cycle arrest, inhibition of angiogenesis, signal transducer and activator of transcription 3, and PI3K/Akt pathways, as well as the regulation of other molecular targets. Therefore, the current review aimed to explore the role of baicalein in different types of cancer along with mechanisms of action. Besides this, the synergistic effects with other anti-cancerous drugs and the nano-formulation based delivery of baicalein have also been discussed.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Malak Alanezi
- Department of Dentistry, Dr. Sulaiman Al Habib Medical Group, Qassim 51431, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
8
|
Cao S, Zhang M, Yuan M, Yang D, Zhao M, Zhang S, Wang P, Zhang R, Gao X. The pharmaceutical excipient PEG400 affect the absorption of baicalein in Caco-2 monolayer model by interacting with UDP-glucuronosyltransferases and efflux transport proteins. Pharmacol Res Perspect 2022; 10:e00928. [PMID: 35148019 PMCID: PMC8929329 DOI: 10.1002/prp2.928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
The bioavailability of drugs is often related to intestinal metabolism and transport mechanisms. In previous studies, pharmaceutical excipients were recognized as inert substances in clinical safety evaluations. However, a large number of studies have shown that pharmaceutical excipients regulate the metabolism and transport of drugs in the body and improve the bioavailability. The pharmaceutical excipient polyethylene glycol 400 (PEG400) as a good solubilizer and surfactant has the potential to improve the bioavailability of drugs. The combined action of UDP-glucuronosyltransferases (UGTs) and efflux transport proteins is responsible for the intestinal disposition and poor bioavailability of baicalein. Our aim is to study the effect of PEG400 on the absorption of baicalein on the Caco-2 monolayer, and confirm the interaction of PEG400 with UGTs (UGT1A8 and UGT1A9) and efflux transports. We initially found that baicalein in the Caco-2 monolayer would be metabolized into glucuronide conjugates BG and B6G under the action of UGT1A8 and UGT1A9 on the endoplasmic reticulum membrane, and then mainly excreted to different sides by acting of MRP and BCRP. The addition of PEG400 significantly accelerated the metabolism of B in Caco-2 cells and increased the penetration of BG and B6G. Furthermore, PEG400 also significantly decreased the efflux ratio of BG and B6G, which was the evidence of the interaction with the efflux transporters. In the in vitro intestinal microsome regeneration system, low concentration PEG400 decreased the Km value of UGT1A8 and UGT1A9 (key enzymes that mediate the production of BG and B6G); high concentration PEG400 enhanced the Vmax value of UGT1A8 and UGT1A9. In conclusion, our results determined that PEG400 interacted with some UGTs and efflux transporters, which were the main factors affecting the absorption of baicalein.
Collapse
Affiliation(s)
- Siyuan Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Minyan Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Dan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Mei Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Shuo Zhang
- Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China.,Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Rongping Zhang
- School of Pharmacy, Kunming Medical University, Kunming, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| |
Collapse
|
9
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
10
|
Qi W, Yan Q, Lv M, Song D, Wang X, Tian K. Prognostic Signature of Osteosarcoma Based on 14 Autophagy-Related Genes. Pathol Oncol Res 2021; 27:1609782. [PMID: 34335109 PMCID: PMC8322075 DOI: 10.3389/pore.2021.1609782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Background: Osteosarcoma is a common malignancy of bone with inferior survival outcome. Autophagy can exert multifactorial influence on tumorigenesis and tumor progression. However, the specific function of genes related to autophagy in the prognosis of osteosarcoma patients remains unclear. Herein, we aimed to explore the association of genes related to autophagy with the survival outcome of osteosarcoma patients. Methods: The autophagy-associated genes that were related to the prognosis of osteosarcoma were optimized by LASSO Cox regression analysis. The survival of osteosarcoma patients was forecasted by multivariate Cox regression analysis. The immune infiltration status of 22 immune cell types in osteosarcoma patients with high and low risk scores was compared by using the CIBERSORT tool. Results: The risk score model constructed according to 14 autophagy-related genes (ATG4A, BAK1, BNIP3, CALCOCO2, CCL2, DAPK1, EGFR, FAS, GRID2, ITGA3, MYC, RAB33B, USP10, and WIPI1) could effectively predict the prognosis of patients with osteosarcoma. A nomogram model was established based on risk score and metastasis. Conclusion: Autophagy-related genes were identified as pivotal prognostic signatures, which could guide the clinical decision making in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Wei Qi
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Qian Yan
- Department of Information Section, Zibo Central Hospital, Zibo, China
| | - Ming Lv
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Delei Song
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Xianbin Wang
- Department of Eastern Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Kangsong Tian
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| |
Collapse
|
11
|
Construction and Validation of an Autophagy-Related Prognostic Model for Osteosarcoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:9943465. [PMID: 34194501 PMCID: PMC8181090 DOI: 10.1155/2021/9943465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
While the prognostic value of autophagy-related genes (ARGs) in OS patients remains scarcely known, increasing evidence is indicating that autophagy is closely associated with the development and progression of osteosarcoma (OS). Therefore, we explored the prognostic value of ARGs in OS patients and illuminate associated mechanisms in this study. When the OS patients in the training/validation cohort were stratified into high- and low-risk groups according to the risk model established using least absolute shrinkage and selection operator (LASSO) regression analysis, we observed that patients in the low-risk group possessed better prognosis (P < 0.0001). Univariate/Multivariate COX regression and subgroup analysis demonstrated that the ARGs-based risk model was an independent survival indicator for OS patients. The nomogram incorporating the risk model and clinical features exhibited excellent prognostic accuracy. GO, KEGG, and GSVA analyses collectively indicated that bone development-associated pathway mediated the contribution of ARGs to the malignance of OS. Immune infiltration analysis suggested the potential pivotal role of macrophage in OS. In summary, the risk model based on 12 ARGs possessed potent capacity in predicting the prognosis of OS patients. Our work may assist clinicians to map out more reasonable treatment strategies and facilitate individual-targeted therapy in osteosarcoma.
Collapse
|
12
|
Qiu Z, Du X, Chen K, Dai Y, Wang S, Xiao J, Li G. Gene signatures with predictive and prognostic survival values in human osteosarcoma. PeerJ 2021; 9:e10633. [PMID: 33520450 PMCID: PMC7812922 DOI: 10.7717/peerj.10633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is a common malignancy seen mainly in children and adolescents. The disease is characterized by poor overall prognosis and lower survival due to a lack of predictive markers. Many gene signatures with diagnostic, prognostic, and predictive values were evaluated to achieve better clinical outcomes. Two public data series, GSE21257 and UCSC Xena, were used to identify the minimum number of robust genes needed for a predictive signature to guide prognosis of patients with osteosarcoma. The lasso regression algorithm was used to analyze sequencing data from TCGA-TARGET, and methods such as Cox regression analysis, risk factor scoring, receiving operating curve, KMplot prognosis analysis, and nomogram were used to characterize the prognostic predictive power of the identified genes. Their utility was assessed using the GEO osteosarcoma dataset. Finally, the functional enrichment analysis of the identified genes was performed. A total of twenty-gene signatures were found to have a good prognostic value for predicting patient survival. Gene ontology analysis showed that the key genes related to osteosarcoma were categorized as peptide–antigen binding, clathrin-coated endocytic vesicle membrane, peptide binding, and MHC class II protein complex. The osteosarcoma related genes in these modules were significantly enriched in the processes of antigen processing and presentation, phagocytosis, cell adhesion molecules, Staphylococcus aureus infection. Twenty gene signatures were identified related to osteosarcoma, which would be helpful for predicting prognosis of patients with OS. Further, these signatures can be used to determine the subtypes of osteosarcoma.
Collapse
Affiliation(s)
- Zhongpeng Qiu
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xinhui Du
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Kai Chen
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yi Dai
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Sibo Wang
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jun Xiao
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Gang Li
- Trauma Department of Orthopedics, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
13
|
Tuli HS, Aggarwal V, Kaur J, Aggarwal D, Parashar G, Parashar NC, Tuorkey M, Kaur G, Savla R, Sak K, Kumar M. Baicalein: A metabolite with promising antineoplastic activity. Life Sci 2020; 259:118183. [PMID: 32781058 DOI: 10.1016/j.lfs.2020.118183] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Cancer, being a multifactorial disease has diverse presentation in different subgroups which is mainly attributed to heterogenous presentation of tumor cells. This cancer cell heterogeneity is the major reason for variable response to standard chemotherapeutic regimes owing to which high relapse rate and multi-drug resistance has increasingly been reported over the past decade. Interestingly, the research on natural compounds in combination with standard therapies have reported with interesting and promising results from the pre-clinical trials and few of which have also been tested in other phases of clinical trials. This review focusses on baicalein, an emerging anti-cancerous natural compound, its chemistry and mechanism of action. In view of promising pre-clinical this review is mainly motivated by the results observed from baicalein treatment of different cancer cell population. With the advancing scientific evidence on the anti-malignant potential of baicalein with respect to its pharmacological activities encompassing from anti-inflammatory to anti-angiogenic/anti-metastatic effects, the focus is mainly directed to understanding the precise mechanism of action of baicalein. In the process of understanding the underlying signaling cascades, the role of mitogen activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), AKT serine/threonine protein kinase B (AKT), poly(ADP-ribose) polymerase (PARP), matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9) and caspase-3/-8,-9 have been highlighted as the major players for baicalein anti-malignant potential. This is also supported by the interesting pre-clinical findings which cumulatively pave the way ahead for development of baicalein as an adjunct anti-cancer treatment with chemotherapeutic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India.
| | - Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | | | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vileparle-West, Mumbai-56, India
| | - Raj Savla
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vileparle-West, Mumbai-56, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| |
Collapse
|
14
|
Wang C, He C, Lu S, Wang X, Wang L, Liang S, Wang X, Piao M, Cui J, Chi G, Ge P. Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF. Cell Death Dis 2020; 11:630. [PMID: 32801360 PMCID: PMC7429844 DOI: 10.1038/s41419-020-02866-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Induction of lethal autophagy has become a strategy to eliminate glioma cells, but it remains elusive whether autophagy contributes to cell death via causing mitochondria damage and nuclear translocation of apoptosis inducing factor (AIF). In this study, we find that silibinin induces AIF translocation from mitochondria to nuclei in glioma cells in vitro and in vivo, which is accompanied with autophagy activation. In vitro studies reveal that blocking autophagy with 3MA, bafilomycin A1 or by knocking down ATG5 with SiRNA inhibits silibinin-induced mitochondrial accumulation of superoxide, AIF translocation from mitochondria to nuclei and glioma cell death. Mechanistically, silibinin activates autophagy through depleting ATP by suppressing glycolysis. Then, autophagy improves intracellular H2O2 via promoting p53-mediated depletion of GSH and cysteine and downregulation of xCT. The increased H2O2 promotes silibinin-induced BNIP3 upregulation and translocation to mitochondria. Knockdown of BNIP3 with SiRNA inhibits silibinin-induced mitochondrial depolarization, accumulation of mitochondrial superoxide, and AIF translocation from mitochondria to nuclei, as well as prevents glioma cell death. Furthermore, we find that the improved H2O2 reinforces silibinin-induced glycolysis dysfunction. Collectively, autophagy contributes to silibinin-induced glioma cell death via promotion of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF.
Collapse
Affiliation(s)
- Chongcheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Shipeng Liang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Xinyu Wang
- Department of Radiotherapy, Second Hospital of Jilin University, 130021, Changchun, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, 130021, Changchun, China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 130021, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China.
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
15
|
ÖRENLİLİ YAYLAGÜL E, ÜLGER C. The effect of baicalein on Wnt/β-catenin pathway and miR-25 expression in Saos-2 osteosarcoma cell line. Turk J Med Sci 2020; 50:1168-1179. [PMID: 32283909 PMCID: PMC7379426 DOI: 10.3906/sag-2001-161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background/aim Osteosarcoma is the most common primary bone malignancy that occurs frequently in children and adolescents. Baicalein, a flavonoid that has attracted great attention in recent years with its strong antitumor activity, shows a wide range of biological and pharmaceutical effects.MicroRNAs have been found to be involved in many critical processes in cancers. This study aimed to investigate the effect of baicalein and miR-25 on Wnt/β-catenin signaling pathway of osteosarcoma cell line Saos-2. Materials and methods Cell viability was assessed, and qRT-PCR and Western blot were performed to study the effects of baicalein on expression of Wnt/β-catenin signaling pathway-realted genes (β-catenin, GSK-3β, and Axin2) of Saos-2 cells. Results Our results indicated that baicalein can inhibit the proliferation (IC50 value 35 μM), regulate Wnt/β-catenin pathway and also increase miR-25 expression of Saos-2. Baicalein and also miR-25 decreased the expression of β-catenin and Axin2, while increasing the expression of GSK-3β. Down regulation of miR-25 decreased the expression of GSK-3β, while β-catenin and Axin2 expression increased. Conclusion These findings demonstrate that baicalein may target genes related to the Wnt/β-catenin pathway by regulating miR-25 expression and may be a potential Wnt/β-catenin pathway inhibitor for osteosarcoma therapy.
Collapse
Affiliation(s)
- Esra ÖRENLİLİ YAYLAGÜL
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Aydın Adnan Menderes University, AydınTurkey
| | - Celal ÜLGER
- Department of Biology, Faculty of Arts and Science, Aydın Adnan Menderes University, AydınTurkey
| |
Collapse
|
16
|
Zhang ZJ, Xiao Q, Li XY. NF-κB-Activated miR-574 Promotes Multiple Malignant and Metastatic Phenotypes by Targeting BNIP3 in Thyroid Carcinoma. Mol Cancer Res 2020; 18:955-967. [PMID: 32217689 DOI: 10.1158/1541-7786.mcr-19-1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy, and miR-574 is significantly upregulated in thyroid cancer. However, the role and underlying mechanism of miR-574 in thyroid cancer development are poorly understood. In this study, we showed that NF-κB/p65 signaling pathway was activated and miR-574 was upregulated in thyroid cancer cells. p65 directly bound to the promoter of miR-574 and activated miR-574 transcription. Functionally, miR-574 inhibited apoptosis, promoted proliferation and migration of thyroid cancer cells, and stimulated thyroid cancer-induced tube formation of endothelial cells. On the molecular level, miR-574 inhibited the expression of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) by binding to 3'-UTR of BNIP3. miR-574 also downregulated the expression of apoptosis-inducing factor (AIF), while elevated the levels of MMP2, MMP9, and VEGFA. In vivo, miR-574 promoted xenograft growth, which was associated with reduced apoptosis and enhanced angiogenesis. NF-κB/miR-574 signaling presents multiple oncogenic activities on thyroid cancer development by directly regulating the BNIP3/AIF pathway. Therefore, targeting NF-κB/miR-574 signaling may reduce the aggressiveness of thyroid cancer. IMPLICATIONS: miR-574, directly regulated by NF-κB/p65, promotes tumorigenesis of thyroid cancer via inhibiting BNIP3/AIF pathway.
Collapse
Affiliation(s)
- Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China
| | - Qian Xiao
- Center for Mental Health Services, Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China
| | - Xin-Ying Li
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
17
|
Hamdan N, Alkasir R, Fan YS, Li Q, Li HH, Dong SQ, Fan K, Liu ZJ. Transcriptome Analysis and Characterized Differentially Regulated Genes Between Treated and Untreated SaOS-2 Cells with Baicalein. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.164.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Saul D, Weber M, Zimmermann MH, Kosinsky RL, Hoffmann DB, Menger B, Taudien S, Lehmann W, Komrakova M, Sehmisch S. Effect of the lipoxygenase inhibitor baicalein on bone tissue and bone healing in ovariectomized rats. Nutr Metab (Lond) 2019; 16:4. [PMID: 30651746 PMCID: PMC6329162 DOI: 10.1186/s12986-018-0327-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Osteoporosis is one of the world's major medical burdens in the twenty-first century. Pharmaceutical intervention currently focusses on decelerating bone loss, but phytochemicals such as baicalein, which is a lipoxygenase inhibitor, may rescue bone loss. Studies evaluating the effect of baicalein in vivo are rare. METHODS We administered baicalein to sixty-one three-month-old female Sprague-Dawley rats. They were divided into five groups, four of which were ovariectomized (OVX) and one non-ovariectomized (NON-OVX). Eight weeks after ovariectomy, bilateral tibial osteotomy with plate osteosynthesis was performed and bone formation quantified. Baicalein was administered subcutaneously using three doses (C1: 1 mg/kg BW; C2: 10 mg/kg BW; and C3: 100 mg/kg BW) eight weeks after ovariectomy for four weeks. Finally, femora and tibiae were collected. Biomechanical tests, micro-CT, ashing, histological and gene expression analyses were performed. RESULTS Biomechanical properties were unchanged in tibiae and reduced in femora. In tibiae, C1 treatment enhanced callus density and cortical width and decreased callus area. In the C3 group, callus formation was reduced during the first 3 weeks after osteotomy, correlating to a higher mRNA expression of Osteocalcin, Tartrate-resistant acid phosphatase and Rankl. In femora, baicalein treatments did not alter bone parameters. CONCLUSIONS Baicalein enhanced callus density and cortical width but impaired early callus formation in tibiae. In femora, it diminished the biomechanical properties and calcium-to-phosphate ratio. Thus, it is not advisable to apply baicalein to treat early bone fractures. To determine the exact effects on bone healing, further studies in which baicalein treatments are started at different stages of healing are needed.
Collapse
Affiliation(s)
- Dominik Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Marie Weber
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Marc Hendrik Zimmermann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Daniel Bernd Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Björn Menger
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stefan Taudien
- Division of Infection Control and Infectious Diseases, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
19
|
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113568. [PMID: 30424557 PMCID: PMC6274856 DOI: 10.3390/ijms19113568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The role of phytochemicals as potential prodrugs or therapeutic substances against tumors has come in the spotlight in the very recent years, thanks to the huge mass of encouraging and promising results of the in vitro activity of many phenolic compounds from plant raw extracts against many cancer cell lines. Little but important evidence can be retrieved from the clinical and nutritional scientific literature, where flavonoids are investigated as major pro-apoptotic and anti-metastatic compounds. However, the actual role of these compounds in cancer is still far to be fully elucidated. Many of these phytochemicals act in a pleiotropic and poorly specific manner, but, more importantly, they are able to tune the reactive oxygen species (ROS) signaling to activate a survival or a pro-autophagic and pro-apoptosis mechanism, depending on the oxidative stress-responsive endowment of the targeted cell. This review will try to focus on this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
- Scientific Secretary-Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, DanyloHalytskyLviv National Medical University, 79007 Lviv, Ukraine.
| | - Antonio Vella
- AOUI Verona, University Hospital, Section of Immunology, 37134 Verona, Italy.
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| | - Taras Upyr
- Department of Pharmacognosy, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| |
Collapse
|
20
|
Zhang J, Yang W, Zhou YB, Xiang YX, Wang LS, Hu WK, Wang WJ. Baicalein inhibits osteosarcoma cell proliferation and invasion through the miR‑183/Ezrin pathway. Mol Med Rep 2018; 18:1104-1112. [PMID: 29845278 DOI: 10.3892/mmr.2018.9036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS), a common and primary malignant bone tumor, is characterized by highly aggressive potency. Baicalein, a bioactive flavone isolated from Scutellaria baicalensis Georgi, has been shown to inhibit the progression of numerous tumors, including OS. However, the mechanisms by which baicalein protects against OS are still largely unknown. The results of the present study showed that administration of baicalein significantly inhibited the proliferation, migration and invasion and promoted apoptosis in MG‑63 and Saos‑2 cells. Ezrin was identified as a target gene of microRNA (miR)‑183. MG‑63 and Saos‑2 cells treated with baicalein exhibited increased miR‑183 levels and decreased Ezrin expression. Importantly, miR‑183 inhibition and Ezrin overexpression abolished the effects of baicalein on MG‑63 and Saos‑2 cell proliferation, migration, invasion and apoptosis. Taken together, these findings suggest that baicalein inhibits the proliferation, migration and invasion and induces apoptosis in OS cells by activating the miR‑183/Ezrin pathway, revealing a novel mechanism underlying anti‑OS effects of baicalein.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Yang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - You-Bing Zhou
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong-Xiao Xiang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lu-Shan Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wen-Kai Hu
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
21
|
Su MQ, Zhou YR, Rao X, Yang H, Zhuang XH, Ke XJ, Peng GY, Zhou CL, Shen BY, Dou J. Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. Int J Oncol 2018; 53:750-760. [PMID: 29749481 DOI: 10.3892/ijo.2018.4402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 11/05/2022] Open
Abstract
Baicalein has efficient antitumor properties and has been reported to promote the apoptosis of several human cancer cell lines. Decidual protein induced by progesterone (DEPP), a transcriptional target of Forkhead Box O, was originally identified from the human endometrial stromal cell cDNA library. However, the expression and physiological functions of DEPP in human colon cancer cells remain to be fully elucidated. In the present study, it was reported that baicalein stimulated apoptosis and morphological changes of HCT116, A549 and Panc‑1 cells in a dose-dependent manner. It also upregulated the mRNA and protein levels of DEPP and growth arrest and DNA damage-inducible 45α (Gadd45a). In addition, the overexpression of DEPP promoted mitogen-activated protein kinase (MAPK) phosphorylation. To further investigate the role of DEPP and Gadd45a in baicalein-induced apoptosis, HCT116 cells were transfected with small interfering RNA against either DEPP or Gadd45a as in vitro models. Through an Annexin V/PI double staining assay, it was observed that baicalein-induced apoptosis was impaired by the inactivation of either DEPP or Gadd45a, which in turn restricted the baicalein-induced activation of caspase‑3 and caspase‑9 and phosphorylation of MAPKs. In addition, the inhibition of c‑Jun N‑terminal kinase (JNK)/p38 activity with SP600125/SB203580 decreased the expression of Gadd45a, whereas the inactivation of extracellular signal-regulated kinase with SCH772984 had no effect on the expression of Gadd45a. Taken together, these results demonstrated that baicalein induced the upregulation of DEPP and Gadd45a, which promoted the activation of MAPKs with a positive feedback loop between Gadd45a and JNK/p38, resulting in a marked apoptotic response in human colon cancer cells. These results indicated that baicalein is a potential antitumor drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Meng-Qi Su
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi-Ran Zhou
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Xuan Rao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin-Hao Zhuang
- Department of Chemistry and Biochemistry, University of Oregon, OR 97401, USA
| | - Xue-Jia Ke
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guang-Yong Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Chang-Lin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bai-Yong Shen
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
22
|
Liposome‑delivered baicalein induction of myeloid leukemia K562 cell death via reactive oxygen species generation. Mol Med Rep 2018; 17:4524-4530. [PMID: 29328378 PMCID: PMC5802230 DOI: 10.3892/mmr.2018.8396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022] Open
Abstract
Baicalein (BL), a potential cancer chemopreventative flavone, has been reported to inhibit cancer cell growth by inducing apoptosis and causing cell cycle arrest in various human cancer cell models. Delivery of BL via nanoliposomes has been shown to improve its oral bioavailability and long-circulating property in vivo. However, the role of BL in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms has yet to be elucidated. In the present study, BL was formulated into liposomes with different sizes to improve its solubility and stability. The cytotoxic and pro-apoptotic effects of free BL and liposomal BL were also evaluated. The results demonstrated that 100 nm liposomes were the most stable formulation when compared with 200 and 400 nm liposomes. Liposomal BL inhibited K562 cell growth as efficiently as free BL (prepared in DMSO), indicating that the liposome may be a potential vehicle to deliver BL for the treatment of CML. Flow cytometry analysis showed that there was significant (P<0.005) cell cycle arrest in the sub-G1 phase (compared with vehicle control), indicating cell apoptosis following 20 µM liposomal BL or free BL treatment of K562 cells for 48 h. The induction of cell apoptosis by all BL preparations was further confirmed through the staining of treated cells with Annexin V-fluorescein isothiocyanate/propidium iodide. A significant increase in reactive oxygen species (ROS) generation was observed in free BL and liposomal BL treated cells, with a higher level of ROS produced from those treated with free BL. This indicated that cell apoptosis induced by BL may be via ROS generation and liposome delivery may further extend the effect through its long-circulating property.
Collapse
|
23
|
Ferreira A, Santos AO, Falcão A, Alves G. In vitro screening of dual flavonoid combinations for reversing P-glycoprotein-mediated multidrug resistance: Focus on antiepileptic drugs. Food Chem Toxicol 2017; 111:84-93. [PMID: 29122665 DOI: 10.1016/j.fct.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
The combined use of different P-glycoprotein (P-gp) inhibitors may be a relevant approach to the synergistic and safer inhibition of the P-gp-mediated drug efflux. Herein, we aimed to explore dual combinations of the flavonoids baicalein, (-)-epigallocatechin gallate, kaempferol, quercetin and silymarin to reverse the interference of P-gp on the intracellular accumulation of antiepileptic drugs (AEDs). The intracellular accumulation of rhodamine 123 (a classic P-gp substrate) and of several commonly used AEDs (carbamazepine, phenytoin, oxcarbazepine) or their metabolites (carbamazepine-10,11-epoxide and licarbazepine) was evaluated in MDCK-MDR1 cells in the presence and absence of individual flavonoids and their combinations. A selected flavonoid combination [(-)-epigallocatechin gallate/silymarin] was also evaluated in transepithelial transport experiments using licarbazepine (active metabolite of oxcarbazepine) as a model compound. Most flavonoid combinations increased rhodamine 123 intracellular uptake in a greater extent than their additive individual effects at similar concentrations. Moreover, selected (-)-epigallocatechin gallate/silymarin and kaempferol/baicalein combinations also enhanced the intracellular accumulation of all AEDs and metabolites. Overall, the combination of (-)-epigallocatechin gallate/silymarin was the most promising one. Thus, dual flavonoid combinations may be useful to overcome the P-gp-mediated efflux of AEDs and their metabolites, making their association to AED therapy a potentially valuable approach to circumvent pharmacoresistance in epilepsy.
Collapse
Affiliation(s)
- Ana Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Adriana O Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Amílcar Falcão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
24
|
Jin Z, Huang J, Zhu Z. Baicalein reduces endometriosis by suppressing the viability of human endometrial stromal cells through the nuclear factor-κB pathway in vitro. Exp Ther Med 2017; 14:2992-2998. [PMID: 28912852 PMCID: PMC5585734 DOI: 10.3892/etm.2017.4860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to evaluate the effects of baicalein on human endometrial stromal cells in vitro. Ectopic endometrium samples were obtained from 6 female patients with ovarian endometriosis who underwent laparoscopic surgical procedures from July to September 2015. After culturing the cells, immunocytochemistry was performed to verify the purity and homogeneity of the endometrial stromal cells, and a Cell Counting Kit-8 assay was used to evaluate cell viability. In addition, cell cycle progression was analyzed using flow cytometry, and the effects of baicalein on the expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), proliferating cell nuclear antigen (PCNA) and cyclin D1 in endometrial stromal cells were evaluated using western blot analysis. The related signaling pathways were also investigated by incubating cells with inhibitors of signaling pathways, prior to adding 40 µM baicalein for 48 h, followed by analysis of cell viability using a Cell Counting Kit-8 assay. The results indicated that treatment with baicalein significantly induced a dose-dependent decrease (P<0.05) in the viability of human endometrial stromal cells, which was abolished by inhibition of the nuclear factor (NF)-κB signaling pathway. However, baicalein treatment did not induce a time-dependent decrease in viability, as cell viabilities between the 24, 48 and 72 h treatment groups did not differ significantly. The number of cells in the G0/G1 phase significantly increased following treatment with baicalein (P<0.05), while the number of cells in the S and G2/M phases significantly decreased (P<0.05). Baicalein-treated cells also exhibited significantly reduced expression of Bcl-2, PCNA and cyclin D1 compared with control cells (P<0.05). These results suggested that baicalein may suppress the viability of human endometrial stromal cells through the NF-κB signaling pathway in vitro, and may induce apoptosis and promote cell cycle arrest at the G0/G1 phase. Thus, baicalein may provide a novel treatment option for endometriosis.
Collapse
Affiliation(s)
- Zhixing Jin
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Jianqin Huang
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Zhiling Zhu
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
25
|
Liu C, Ma M, Zhang J, Gui S, Zhang X, Xue S. Galangin inhibits human osteosarcoma cells growth by inducing transforming growth factor-β1-dependent osteogenic differentiation. Biomed Pharmacother 2017; 89:1415-1421. [PMID: 28340520 DOI: 10.1016/j.biopha.2017.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy of the musculoskeletal system, and is associated with excessive proliferation and poor differentiation of osteoblasts. Currently, despite the use of traditional chemotherapy and radiotherapy, no satisfactory and effective agent has been developed to treat the disease. Herein, we found that a flavonoid natural product, galangin, could significantly attenuate human osteosarcoma cells proliferation, without causing obvious cell apoptosis. Moreover, galangin enhanced the expression of osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin and osteopontin) remarkably and elevated the alkaline phosphatase activity in human osteosarcoma cells. And galangin could also attenuated osteosarcoma growth in vivo. These bioactivities of galangin resulted from its selective activation of the transforming growth factor (TGF)-β1/Smad2/3 signaling pathway, which was demonstrated by pathway blocking experiments. These findings suggested that galangin could be a promising agent to treat osteosarcoma. In addition, targeting TGF-β1 to induce osteogenic differentiation might represent a novel therapeutic strategy to treat osteosarcoma with minimal side effects.
Collapse
Affiliation(s)
- Chunhong Liu
- Department of Orthopedic Surgery, The Second People's Hospital of Wuhu, Anhui, China.
| | - Mingming Ma
- Department of Orthopedic Surgery, The People's Hospital of Fuyang, Anhui, China.
| | - Junde Zhang
- Department of Orthopedic Surgery, The Second People's Hospital of Wuhu, Anhui, China.
| | - Shaoliu Gui
- Department of Orthopedic Surgery, The Second People's Hospital of Wuhu, Anhui, China.
| | - Xiaohai Zhang
- Department of Orthopedic Surgery, The Second People's Hospital of Wuhu, Anhui, China.
| | - Shuangtao Xue
- Department of Orthopedic Surgery, The Second People's Hospital of Wuhu, Anhui, China.
| |
Collapse
|
26
|
Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A, Huang H. The Fascinating Effects of Baicalein on Cancer: A Review. Int J Mol Sci 2016; 17:ijms17101681. [PMID: 27735841 PMCID: PMC5085714 DOI: 10.3390/ijms17101681] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide and a major global health problem. In recent decades, the rates of both mortality and morbidity of cancer have rapidly increased for a variety of reasons. Despite treatment options, there are serious side effects associated with chemotherapy drugs and multiple forms of drug resistance that significantly reduce their effects. There is an accumulating amount of evidence on the pharmacological activities of baicalein (e.g., anti-inflammatory, antioxidant, antiviral, and antitumor effects). Furthermore, there has been great progress in elucidating the target mechanisms and signaling pathways of baicalein's anti-cancer potential. The anti-tumor functions of baicalein are mainly due to its capacities to inhibit complexes of cyclins to regulate the cell cycle, to scavenge oxidative radicals, to attenuate mitogen activated protein kinase (MAPK), protein kinase B (Akt) or mammalian target of rapamycin (mTOR) activities, to induce apoptosis by activating caspase-9/-3 and to inhibit tumorinvasion and metastasis by reducing the expression of matrix metalloproteinase-2/-9 (MMP-2/-9). In this review, we focused on the relevant biological mechanisms of baicalein involved in inhibiting various cancers, such as bladder cancer, breast cancer, and ovarian cancer. Moreover, we also summarized the specific mechanisms by which baicalein inhibited the growth of various tumors in vivo. Taken together, baicalein may be developed as a potential, novel anticancer drug to treat tumors.
Collapse
Affiliation(s)
- Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yutong Gao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhipeng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
27
|
Abstract
The constituents of many traditional Chinese herbal remedies are currently at the forefront of modern cancer research. Baicalein, a bioactive flavone widely used in nutraceuticals and pharmaceuticals, has shown great potential in the treatment and prevention of cancer without causing severe side effects. Baicalein induces cancer cell apoptosis and cause cell cycle arrest. It shows inhibitory effects on angiogenesis, metastasis and inflammation, all of which are necessary for the promotion and progression of cancer. This review presents an overview of the anti-cancer effects and mechanisms of baicalein. In addition, the bioavailability of baicalein and approaches to improve it are summarized. Treatments of baicalein in combination with other anti-cancer agents are also mentioned.
Collapse
|
28
|
Kim HJ, Park C, Han MH, Hong SH, Kim GY, Hoon Hong S, Deuk Kim N, Choi YH. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells. Drug Dev Res 2016; 77:73-86. [DOI: 10.1002/ddr.21298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/06/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Hong Jae Kim
- Department of Pharmacy, College of Pharmacy; Pusan National University; Busan 609-735 South Korea
- Anti-Aging Research Center, Dongeui University; Busan 614-714 South Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology; Dongeui University; Busan 614-714 South Korea
| | - Min-Ho Han
- Natural Products Research Team, National Marine Biodiversity Institute of Korea; Seocheon 325-902 South Korea
| | - Su-Hyun Hong
- Department of Biochemistry; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences; Jeju National University; Jeju 690-756 South Korea
| | - Sang Hoon Hong
- Department of Internal Medicine; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy; Pusan National University; Busan 609-735 South Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University; Busan 614-714 South Korea
- Department of Biochemistry; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| |
Collapse
|
29
|
He G, He G, Zhou R, Pi Z, Zhu T, Jiang L, Xie Y. Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo. Biochem Biophys Res Commun 2016; 469:1075-82. [DOI: 10.1016/j.bbrc.2015.12.100] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
|