1
|
Guyon L, Ladaycia A, Bosio A, Lemaire L, Franconi F, Lelièvre B, Lautram N, Pigeon P, Jaouen G, Passirani C, Lepeltier E. Self-assemblies of cell-penetrating peptides and ferrocifens: design and biological evaluation of an innovative platform for lung cancer treatment. NANOSCALE 2025; 17:9232-9244. [PMID: 40105246 DOI: 10.1039/d5nr00643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chemotherapy, currently used for lung cancer treatment, often consists in a combination of drugs with a moderate efficacy and severe side effects. A major drawback of the classical inorganic drugs used is their hydrophobicity, leading to a very low blood availability and weak efficacy. To overcome this constraint, a nanoplatform was set up in order to vectorize a ferrocifen drug, an organometallic tamoxifen derivative known for its really potent in vitro activity, but as well for its poor water solubility. Two different ferrocifens were tested: P54 and P819. The covalent conjugation of a cell-penetrating peptide (CPP) to the ferrocifen was performed, leading to an amphiphilic prodrug, potentially able to self-assemble. The CPPs used in this study are polyarginines and RLW. Moreover, in order to bring stealth and mucopenetration properties, polyethylene glycol (PEG) was incorporated into the nanostructure. The co-nanoprecipitation of CPP-ferrocifen and PEG-ferrocifen was investigated to achieve self-assemblies. A comparison of the biological activities of different suspensions was performed in vitro on a healthy cell line and on two different lung cancer cell lines. The biological activity of P54 was increased by a factor of 9 with the Arg9-P54 suspension by increasing the cell internalization. Moreover, the P54-based-self-assemblies were chosen to test their in vivo activity on mice bearing lung tumors. The results showed that the intratracheal nebulization of Arg9-P54/PEG-P54 or Arg9-P54 suspensions slowed up significantly the evolution of lung cancer in mice: the suspension with PEG brought an additional comfort to the animal during the administration.
Collapse
Affiliation(s)
- Léna Guyon
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | | | - Agnese Bosio
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Univ Angers, Univ Rennes, INRAE, Inserm, CNRS, PRISM, Biogenouest, F-49000 Angers, Rennes, France
| | - Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Univ Angers, Univ Rennes, INRAE, Inserm, CNRS, PRISM, Biogenouest, F-49000 Angers, Rennes, France
| | - Bénédicte Lelièvre
- Centre régional de pharmacovigilance, Laboratoire de pharmacologie-toxicologie, CHU Angers, 4 rue Larrey, F-49100 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - Pascal Pigeon
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Gérard Jaouen
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Elise Lepeltier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Institut Universitaire de France (IUF), France
| |
Collapse
|
2
|
Capart A, Metwally K, Bastiancich C, Da Silva A. Multiphysical numerical study of photothermal therapy of glioblastoma with photoacoustic temperature monitoring in a mouse head. BIOMEDICAL OPTICS EXPRESS 2022; 13:1202-1223. [PMID: 35414964 PMCID: PMC8973158 DOI: 10.1364/boe.444193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
This paper presents a multiphysical numerical study of a photothermal therapy performed on a numerical phantom of a mouse head containing a glioblastoma. The study has been designed to be as realistic as possible. Heat diffusion simulations were performed on the phantom to understand the temperature evolution in the mouse head and therefore in the glioblastoma. The thermal dose has been calculated and lesions caused by heat are shown. The thermal damage on the tumor has also been quantified. To improve the effectiveness of the therapy, the photoabsorber's concentration was increased locally, at the tumor site, to mimic the effect of using absorbing contrast agents such as nanoparticles. Photoacoustic simulations were performed in order to monitor temperature in the phantom: as the Grüneisen parameter changes with the temperature, the photoacoustic signal undergoes changes that can be linked to temperature evolution. These photoacoustic simulations were performed at different instants during the therapy and the evolution of the photoacoustic signal as a function of the spatio-temporal distribution of the temperature in the phantom was observed and quantified. We have developed in this paper a numerical tool that can be used to help defining key parameters of a photothermal therapy.
Collapse
Affiliation(s)
- Antoine Capart
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Khaled Metwally
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | - Chiara Bastiancich
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
3
|
SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics. Drug Deliv Transl Res 2021; 11:515-523. [PMID: 33405212 DOI: 10.1007/s13346-020-00880-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Glioma is a type of cancer with a very poor prognosis with a survival of around 15 months in the case of glioblastoma multiforme (GBM). In order to advance in personalized medicine, we developed polymeric nanoparticles (PNP) loaded with both SPION (superparamagnetic iron oxide nanoparticles) and doxorubicin (DOX). The former being used for its potential to accumulate the PNP in the tumor under a strong magnetic field and the later for its therapeutic potential. The emulsion solvent and evaporation method was selected to develop monodisperse PNP with high loading efficiency in both SPION and DOX. Once injected in mice, a significant accumulation of the PNP was observed within the tumoral tissue under static magnetic field as observed by MRI leading to a reduction of tumor growth rate.
Collapse
|
5
|
Strickland M, Stoll EA. Metabolic Reprogramming in Glioma. Front Cell Dev Biol 2017; 5:43. [PMID: 28491867 PMCID: PMC5405080 DOI: 10.3389/fcell.2017.00043] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid metabolism; oxidative phosphorylation; and fatty acid metabolism, which significantly contributes to energy production in glioma cells. Secondly, we highlight processes (including the Randle Effect, AMPK signaling, mTOR activation, etc.) which are understood to link bio-energetic pathways with oncogenic signals, thereby allowing the glioma cell to achieve a pro-malignant state.
Collapse
Affiliation(s)
- Marie Strickland
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
6
|
Lemaire L, Nel J, Franconi F, Bastiat G, Saulnier P. Perfluorocarbon-Loaded Lipid Nanocapsules to Assess the Dependence of U87-Human Glioblastoma Tumor pO2 on In Vitro Expansion Conditions. PLoS One 2016; 11:e0165479. [PMID: 27788227 PMCID: PMC5082913 DOI: 10.1371/journal.pone.0165479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023] Open
Abstract
Growing tumor cell lines, such as U87-MG glioma cells, under mild hypoxia (3% O2) leads to a ca. 40% reduction in growth rate once implanted in the brain of nude mice, as compared to normoxia (21% O2) grown cells, wherein the former over-express HIF-1 and VEGF-A. Despite developing differently, the tumors have similar: blood perfusion, oxygen consumption, and vascular surface area parameters, whereas the number of blood vessels is nearly doubled in the tumor arising from normoxia cultured cells. Interestingly, tumor oxygen tension, measured using 19F-oximetry, showed that the normoxia grown cells led to tumors characterized by mild hypoxic environment (approximately 4%) conditions, whilst the hypoxia grown cells led to tumors characterized by physioxic environment (approximately 6%) conditions. This reversal in oxygen concentration may be responsible for the apparent paradoxical growth profiles.
Collapse
Affiliation(s)
- Laurent Lemaire
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', Angers, France.,Université Angers, UMR-S1066, Angers, France
| | - Janske Nel
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', Angers, France.,Université Angers, UMR-S1066, Angers, France
| | | | - Guillaume Bastiat
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', Angers, France.,Université Angers, UMR-S1066, Angers, France
| | - Patrick Saulnier
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', Angers, France.,Université Angers, UMR-S1066, Angers, France
| |
Collapse
|