1
|
Malkova AM, Sharoyko VV, Zhukova NV, Gubal AR, Orlova RV. Laboratory biomarkers of an effective antitumor immune response. Clinical significance. Cancer Treat Res Commun 2021; 29:100489. [PMID: 34837797 DOI: 10.1016/j.ctarc.2021.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The modern checkpoint inhibitors block the programmed death-1 receptor and its ligand, cytotoxic T-lymphocyte-associated antigen 4 on tumor cells and lymphocytes, that induces cytotoxic reactions. Nowadays, there are no approved clinical and laboratory predictor markers of immune therapy efficacy, which would allow a more personalized approach to patient selection and treatment. The aim of this review is to analyze possible biomarkers of efficacy for treatment with checkpoint inhibitors according to the pathogenic mechanisms of drug action. The review revealed possible predictive biomarkers, that could be classified to 3 groups: biomarkers of high mutagenic potential of the tumor, biomarkers of high activity of adaptive immunity, biomarkers of low activity of the tumor microenvironment. The determination of the described markers before the start of therapy can be used to formulate a treatment regimen, in which the use of various immunomodulatory drugs, inhibitors of proinflammatory cytokines, angiogenic molecules, and probiotics can be considered.
Collapse
Affiliation(s)
- A M Malkova
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - V V Sharoyko
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - N V Zhukova
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - A R Gubal
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - R V Orlova
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| |
Collapse
|
2
|
Cyr61-positive cancer stem-like cells enhances distal metastases of pancreatic cancer. Oncotarget 2018; 7:73160-73170. [PMID: 27705906 PMCID: PMC5341970 DOI: 10.18632/oncotarget.12248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022] Open
Abstract
Efficient inhibition of tumor metastasis after resection of primary tumors is critical for cancer therapy. We have recently shown that Cyr61 promotes growth of pancreatic ductal adenocarcinoma (PDAC) through PI3k/Akt signaling-enhanced nuclear exclusion of p27. Here, we report that administration of adeno-associated viral vectors carrying a short-hairpin interfering RNA (shRNA) for Cyr61 via pancreatic duct significantly decreased the distal tumor metastases after resection of primary pancreatic tumor in mice. Moreover, Cyr61 depletion in PDAC cells significantly inhibited the tumor sphere formation in vitro, significantly decreased the growth of the subcutaneously transplanted tumor, and significantly decreased the incidence of tumor formation after serial adoptive transplantation into NOD/SCID mice. Finally, higher Cyr61 levels were detected in the PDAC specimens from the patients with distal tumor metastasis, compared to PDAC without metastasis at diagnosis. Together, our study suggests that suppression of Cyr61 in cancer stem cell-like cells in PDAC may inhibit tumor cell metastasis after resection of the primary tumor.
Collapse
|
3
|
Down-regulation of TGF-β RII expression is correlated with tumor growth and invasion in non-functioning pituitary adenomas. J Clin Neurosci 2018; 47:264-268. [DOI: 10.1016/j.jocn.2017.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
|
4
|
Wu SP, Yang Z, Li FR, Liu XD, Chen HT, Su DN. Smad7-overexpressing rat BMSCs inhibit the fibrosis of hepatic stellate cells by regulating the TGF-β1/Smad signaling pathway. Exp Ther Med 2017; 14:2568-2576. [PMID: 28962196 PMCID: PMC5609222 DOI: 10.3892/etm.2017.4836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/28/2017] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are able to differentiate into hepatocytes, promote the regeneration of hepatic cells and inhibit the progression of hepatic fibrosis. Transforming growth factor (TGF)-β1 is one of the key factors in the development of liver fibrosis, which also promotes extracellular matrix (ECM) formation. Drosophila mothers against decapentaplegic 7 (Smad7) is an essential negative regulator in the TGF-β1/Smad signaling pathway. In the present study, bone mesenchymal stem cells (BMSCs) were isolated from rat bone marrow and transfected with lentiviral vectors carrying the Smad7 gene. Smad7-enhanced green fluorescent protein (EGFP)-BMSCs stably expressing Smad7 were subsequently co-cultured with hepatic stellate cells (HSCs) for 48 h. Smad7 and TGF-β1 levels in the culture medium were detected using ELISA, and the levels of collagen (Col) I, Col III, laminin (LN) and hyaluronic acid (HA) were measured using immunoassays. The early apoptosis rates of HSCs were determined via flow cytometry. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to evaluate the mRNA and protein expression profiles, respectively. The results indicated that Smad7-EGFP-BMSCs stably expressing Smad7 were successfully constructed. Upon co-culturing with rat Smad7-EGFP-BMSCs, the early apoptotic rate of HSCs was significantly increased (P<0.05). Levels of Smad7 in the culture medium were also significantly increased (P<0.05), whereas the levels of TGF-β1, Col I, Col III, LN and HA were significantly decreased (P<0.05). Furthermore, the mRNA and protein levels of Smad7 and matrix metalloproteinase 1 were significantly increased (P<0.05), whereas those of TGF-β1, α-SMA, Smad2, smad3, TGF-β receptor I, Col I, tissue inhibitors of metalloproteinase-1 and Col III were significantly decreased. The results of the present study suggest that rat BMSCs overexpressing Smad7 may inhibit the fibrosis of HSCs by regulating the TGF-β1/Smad signaling pathway. This provides a novel insight into future treatments for liver fibrosis.
Collapse
Affiliation(s)
- Shi-Pin Wu
- Department of Infectious Diseases, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Zhi Yang
- Department of Infectious Diseases, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Fu-Rong Li
- The Key Laboratory of Stem Cell and Cellular Therapy, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Xiao-Di Liu
- Department of Infectious Diseases, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Hong-Tao Chen
- Department of Infectious Diseases, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dong-Na Su
- Department of Infectious Diseases, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|