1
|
Gautam N, Kaur M, Kashyap S. Meta-analysis of Genetic polymorphism of Enhancer of Zeste Homolog2 gene in cancer susceptibility. J Cancer Res Ther 2023; 19:1079-1092. [PMID: 37787267 DOI: 10.4103/jcrt.jcrt_1112_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The alteration in the expression of enhancer of zeste homolog-2 (EZH2) gene is very well known in the progression, severity, and aggressiveness of cancer. Hence, it is important to study the genomic variation of the EZH2 gene. Previously, many association-based studies investigated the association between rs2302427C>G and cancer susceptibility. However, the result had been inconsistent. Therefore, our meta-analysis aimed to identify the association between EZH2 rs2302427 and cancer risk. A systematic literature search was done for databases PubMed, Google Scholar, Science Direct, and Cochrane library up to September 2020 and statistical analysis was performed by RevMan v 5.3. A total of six studies comprised 1876 cases and 2555 controls were included in the current meta-analysis. The pooled analysis showed that overall, there is significant association of rs2302427 C>G change with reduced cancer risk (odds ratio = 0.60, 95% confidence interval [0.35-1.03], P = 0.07) but non-significantly. Further, the subgroup analysis also revealed that there is no significant difference between the Asian and European population, and both exhibit the protective nature of rs2302427 with cancer. The present meta-analysis indicated that EZH2 rs2302427 has an association with cancer in reducing the risk but for the Indian population studies are required as the Indian population comprises various sub-population genetically isolated for long.
Collapse
Affiliation(s)
- Nisha Gautam
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Mandeep Kaur
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Surender Kashyap
- Atal Medical and Research University, Mandi, Himachal Pradesh, India
| |
Collapse
|
2
|
Wang X, Xiong M, Pan B, Cho WCS, Zhou J, Wang S, He B. Association Between SNPs in the One-Carbon Metabolism Pathway and the Risk of Female Breast Cancer in a Chinese Population. Pharmgenomics Pers Med 2022; 15:9-16. [PMID: 35046699 PMCID: PMC8761026 DOI: 10.2147/pgpm.s328612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this study is to assess the relationship between the single-nucleotide polymorphism (SNP) in the one-carbon metabolism pathway (MTR rs1805087; MTHFR rs1801133; ALDH1L1 rs2002287, rs2276731; DNMT1 rs16999593, rs2228611; DNMT3B rs2424908) and the risk of female breast cancer (BC) in a Chinese population. Methods A population-based case-control study was conducted, involving a total of 439 BC patients and 439 age-matched healthy controls. We adopted Sequence MASSarray to identify genotyping, and used immunohistochemistry (IHC) to test the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissue. Results We found that rs16999593 (TC/CC vs TT: adjusted OR=1.38, 95% CI: 1.03-1.84, p=0.030) was associated with an increased risk of BC, while rs2228611 was related to a decreased BC risk (GA/AA vs GG: adjusted OR=0.74, 95% CI: 0.56-0.97, p=0.030). In addition, stratified analysis revealed that DNMT1 rs16999593, rs2228611 and ALDH1L1 rs2002287 contributed to the risk of BC, with associations with ER, PR and HER-2 expression. Conclusion In summary, this study revealed that DNMT1 rs16999593 and rs2228611 were associated with BC risk.
Collapse
Affiliation(s)
- Xuhong Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China
| | - Bei Pan
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, People's Republic of China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Yang M, Qiu Y, Jin Y, Liu W, Wang Q, Yi H, Tang S. NR1I2 genetic polymorphisms and the risk of anti-tuberculosis drug-induced hepatotoxicity: A systematic review and meta-analysis. Pharmacol Res Perspect 2020; 8:e00696. [PMID: 33300686 PMCID: PMC7726956 DOI: 10.1002/prp2.696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/12/2023] Open
Abstract
Anti-tuberculosis drug-induced hepatotoxicity (ATDH) is a serious adverse drug reaction. Conflicting results have been obtained regarding the associations of nuclear receptor subfamily 1 group I member 2 (NR1I2) gene polymorphisms on susceptibility to ATDH. Therefore, we aimed to evaluate the associations using a systematic review/meta-analysis approach. PubMed, Medline, Cochrane Library, Web of Science and SinoMed databases were searched for all eligible studies from inception to June 10, 2020. Pooled adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were employed to evaluate the strength of the association between the NR1I2 polymorphisms and the risk of ATDH. Subgroup analysis was performed by region of origin, and meta-regression were performed to detect potential sources of heterogeneity. A total of five case-control studies involving 572 cases and 1867 controls were identified. Fourteen SNPs in the NR1I2 gene have been reported, and the most heavily studied SNPs were rs3814055 and rs7643645. The pooled estimates did not exhibit any significant associations between SNPs rs3814055 and rs7643645 and the risk of ATDH (rs3814055: dominant model, OR = 1.00, 95% CI: 0.82-1.22, P = 1.00; recessive model, OR = 1.17, 95% CI: 0.76-1.78, P = .48; rs7643645: dominant model, OR = 1.04, 95% CI: 0.64-1.68, P = .89; recessive model, OR = 0.98, 95% CI: 0.65-1.49, P = .93). Subgroup analysis obtained similar negative results in Chinese patients, and the diagnostic criteria of ATDH may be the source of heterogeneity. Based on the meta-analysis described in this report, we did not observe any association between NR1I2 gene polymorphisms and ATDH susceptibility. However, this conclusion should be interpreted with caution due to the low number of studies and the relatively small sample size.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yunliang Qiu
- Department of Criminal Science and TechnologyNanjing Forest Police CollegeNanjingChina
| | - Yanyu Jin
- School of PediatricsNanjing Medical UniversityNanjingChina
| | - Wenpei Liu
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Qingliang Wang
- Department of Medical AffairsQilu Hospital of Shandong UniversityJinanChina
| | - Honggang Yi
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Shaowen Tang
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 72:198-213. [PMID: 32461152 DOI: 10.1016/j.semcancer.2020.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
5
|
WITHDRAWN: A novel insight of Asp193His mutation on epigenetic methyltransferase activity of human EZH2 protein: An in-silico approach. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Gautam N, Kaur S, Kaur K, Kumar N. A novel insight of Asp193His mutation on epigenetic methyltransferase activity of human EZH2 protein: An in-silico approach. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
7
|
Ling Z, You Z, Hu L, Zhang L, Wang Y, Zhang M, Zhang G, Chen S, Xu B, Chen M. Effects of four single nucleotide polymorphisms of EZH2 on cancer risk: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:851-865. [PMID: 29497317 PMCID: PMC5820467 DOI: 10.2147/ott.s158173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Although the relationship between several single nucleotide polymorphisms (SNPs) of the oncogene EZH2 and cancer risk has been assessed by some case–control studies, results of subsequent studies are controversial. Sample sizes from single-center studies are also limited, thereby providing unreliable findings. Hence, we conducted a comprehensive search and meta-analysis to evaluate the associations between EZH2 SNPs and cancer risk. Materials and methods A comprehensive literature search for studies focusing on EZH2 SNPs and cancer risk was conducted on PubMed, Web of Science, Embase, and China National Knowledge Infrastructure online databases. Genotype data were extracted and examined through a meta-analysis, and pooled odds ratios (ORs) with 95% CIs were used to assess the corresponding associations. Sensitivity analysis, publication bias assessment, and heterogeneity test were performed using STATA 12.0. Results Twelve eligible studies were included in this meta-analysis. The association of 4 SNPs, namely, rs887569, rs2302427, rs3757441, and rs41277434, in the EZH2 locus with cancer risk was evaluated. Five studies (1,794 cases and 1,878 controls) indicated that rs887569 was related to a decreased cancer risk (CTTT/CC: OR =0.849, 95% CI: [0.740 to 0.973], P=0.019; TT/CCCT: OR =0.793, 95% CI: [0.654 to 0.962], P=0.019). Seven studies (2,408 cases and 2,910 controls) showed that rs2302427 was linked to a decreased cancer risk (GG/CC: OR =0.562, 95% CI: [0.400 to 0.792], P=0.001; CGGG/CC: OR =0.856, 95% CI: [0.748 to 0.980], P=0.024; GG/CCCG: OR =0.733, 95% CI: [0.571 to 0.940], P=0.015). No relationships were observed between rs3757441 or rs41277434 and cancer risk. Conclusion rs887569 and rs2302427 in EZH2 may be correlated with a decreased cancer risk. Although rs3757441 and rs41277434 are independent risk factors of cancer, further large-scale and functional studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Zhixin Ling
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Zonghao You
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Ling Hu
- Department of Nephrology, People's Hospital of Wuxi City, Wuxi, China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Yiduo Wang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Minhao Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
8
|
Correlations of EZH2 and SMYD3 gene polymorphisms with breast cancer susceptibility and prognosis. Biosci Rep 2018; 38:BSR20170656. [PMID: 29089464 PMCID: PMC5794497 DOI: 10.1042/bsr20170656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the correlation of enhancer of Zeste homolog 2 (EZH2) and SET and MYND domain containing 3 (SMYD3) gene polymorphisms with breast cancer susceptibility and prognosis. A total of 712 patients with breast cancer and 783 healthy individuals were selected. Normal breast epithelial cells MCF-10A and breast cancer cells MCF-7, MDA-MB-231, T47D, and Bcap-37 were cultured. Polymerase chain reaction (PCR)-restriction fragment length polymorphism method was applied for genotyping. Reverse-transcription quantitative PCR (RT-qPCR) and Western blotting were used to examine EZH2 and SMYD3 expression in breast cancer tissues and cells. The risk factors and prognostic factors for breast cancer were estimated. The C allele of EZH2 rs12670401 (odds ratio (OR) =1.255, 95% confidence interval (95% CI): 1.085-1.452), T allele of EZH2 rs6464926 (OR =1.240, 95% CI: 1.071-1.435), and three alleles of SMYD3 variable number of tandem repeats (VNTRs) (OR =1.305, 95% CI: 1.097-1.552) could increase susceptibility to breast cancer. Combined genotypes of EZH2 rs12670401 (TC + CC) and EZH2 rs6464926 (CT + TT) were associated with breast cancer susceptibility. Breast cancer tissues had higher EZH2 and SMYD3 expression. EZH2 rs12670401, EZH2 rs6464926, age of menarche, and menopausal status were associated with breast cancer susceptibility. Patients with TT genotype of EZH2 rs12670401 or with CC genotype of EZH2 rs6464926 had higher overall survival (OS). EZH2 rs12670401, EZH2 rs6464926, and clinical staging were independent prognostic factors for breast cancer. SMYD3 VNTR polymorphism exhibited no association with susceptibility and prognosis. EZH2 rs12670401 and rs6464926 polymorphisms, EZH2 and SMYD3 expression, clinical staging, lymph node metastasis, human epidermal growth factor receptor-2 (HER2) status, and metastasis may be correlated with breast cancer susceptibility and prognosis.
Collapse
|
9
|
Xiang S, Zou P, Tang Q, Zheng F, Wu J, Chen Z, Hann SS. HOTAIR-mediated reciprocal regulation of EZH2 and DNMT1 contribute to polyphyllin I-inhibited growth of castration-resistant prostate cancer cells in vitro and in vivo. Biochim Biophys Acta Gen Subj 2017; 1862:589-599. [PMID: 29221985 DOI: 10.1016/j.bbagen.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Polyphyllin I (PPI), one of the steroidal saponins in paris polyphylla, has been reported to exhibit antitumor effects. However, the detailed molecular mechanism underlying this has not been elucidated. METHODS Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and Flow cytometry assays, respectively. Cell invasion and migration were examined by Transwell invasion and wound healing assays. Western blot analysis was performed to examine the protein expressions of zeste homolog 2 (EZH2), DNA methyltransferase 1 (DNMT1). QRT-PCR was used to examine the levels of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR). Small interfering RNAs (siRNAs) method was used to knockdown HOTAIR. Exogenously expressions of HOTAIR, DNMT1 and EZH2 were carried out by Transient transfection assays. EZH2 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. A nude mice xenograft model was used to confirm the findings in vitro. RESULTS We showed that PPI significantly inhibited growth, induced cell cycle arrest of castration-resistant prostate cancer (CRPC) cells. In addition, PPI also reduced the migration and invasion in CRPC cells. In mechanism, we found that PPI decreased the protein expressions of EZH2, DNMT1 and levels of HOTAIR. Interestingly, silenced HOTAIR reduced EZH2 and DNMT1 protein expressions. On the contrary, exogenously expressed HOTAIR resisted PPI-inhibited EZH2 and DNMT1 protein expressions, EZH2 promoter activity and cell growth. Moreover, excessive EZH2 antagonized PPI-suppressed DNMT1 protein expression or vice versa. Consistent with this, PPI inhibited tumor growth, HOTAIR, the protein expressions of DNMT1 and EZH2 in vivo. CONCLUSION Our results show that PPI inhibits growth of CRPC cells through inhibition of HOTAIR expression, subsequently; this results in the repression of DNMT1 and EZH2 expressions. The interactions among HOTAIR, DNMT1 and EZH2, and reciprocal regulation of DNMT1 and EZH2 contribute to the overall responses of PPI. This study reveals a novel mechanism for HOTAIR-mediated regulating DNMT1 and EZH2 in response to PPI in inhibition of the growth of CRPC cells.
Collapse
Affiliation(s)
- SongTao Xiang
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - PeiLiang Zou
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China; Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - ZhiQiang Chen
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
10
|
He J, Pei L, Jiang H, Yang W, Chen J, Liang H. Chemoresistance of colorectal cancer to 5-fluorouracil is associated with silencing of the BNIP3 gene through aberrant methylation. J Cancer 2017; 8:1187-1196. [PMID: 28607593 PMCID: PMC5463433 DOI: 10.7150/jca.18171] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose To investigate the correlation between chemoresistance of colorectal cancer to 5-fluorouracil and BNIP3 and the underlying mechanism. Methods BNIP3 protein in specimens was evaluated using immunohistochemistry. Semi-quantitative reverse transcription PCR and Western blot was employed to assay gene expression. The promoter methylation status of BNIP3 was examined by methylation-specific PCR. Drug sensitivity was assayed using MTT assay. Results Specimens from 81 patients with colorectal cancer receiving 5-fluorouracil-based chemotherapy were analyzed. BNIP3 expression was negative in 42 cancer samples. The mean score of BNIP3 in cancer was 1.8±0.2 and it was 3.7±0.5 in adjacent colorectum (p<0.05). The response rate of the BNIP3 positive group was 63.6% and that of the negative group was 36.4% (p=0.021). The median PFS of the BNIP3 positive group was 9.25 months and that of the BNIP3 negative group was 6.5 months (p=0.011). BNIP3 mRNA was not detectable in 4 of 8 colorectal cell lines and all these 4 cell lines displayed BNIP3 methylated allele only. Other 4 cell lines what expressed detectable BNIP3 displayed BNIP3 unmethylated allele only or both unmethylated and methylated alleles. 5-Aza dramatically increased BNIP3 expression. Knockdown of DNMT1 increased BNIP3. Knockdown of DNMT3B alone did not detectably change BNIP3 expression while knockdown of both DNMT1 and DNMT3B increased BNIP3 expression more than knockdown of DNMT1 alone. Knockdown of BNIP3 decreased chemosensitivity to 5-fluorouracil and increasing BNIP3 through demethylation increased chemosensitivity. Conclusion Chemoresistance of colorectal cancer to 5-fluorouracil is associated with silencing of the BNIP3 gene through aberrant methylation via DNMT1/DNMT3B.
Collapse
Affiliation(s)
- Jianming He
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China.,Department Of Oncology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Li Pei
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Heng Jiang
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Weiwen Yang
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jianfang Chen
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Houjie Liang
- Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
11
|
A Meta-Analysis of the Association between DNMT1 Polymorphisms and Cancer Risk. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3971259. [PMID: 28473984 PMCID: PMC5394348 DOI: 10.1155/2017/3971259] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
Previous studies have examined the associations of DNA methyltransferase 1 (DNMT1) polymorphisms, including single nucleotide polymorphisms rs16999593 (T/C), rs2228611 (G/A), and rs2228612 (A/G), with cancer risk. However, the results are inconclusive. The aim of this meta-analysis is to elucidate the associations between DNMT1 polymorphisms and cancer susceptibility. The PubMed, Embase, Web of Science, and Chinese National Knowledge Infrastructure databases were searched systematically to identify potentially eligible reports. Odd ratios and 95% confidence intervals were used to evaluate the strength of association between three DNMT1 polymorphisms and cancer risk. A total of 16 studies were finally included in the meta-analysis, namely, nine studies of 3378 cases and 4244 controls for rs16999593, 11 studies of 3643 cases and 3866 controls for rs2228611, and three studies of 1343 cases and 1309 controls for rs2228612. The DNMT1 rs2228612 (A/G) polymorphism was significantly related to cancer risk in the recessive model. The meta-analysis also suggested that DNMT1 rs16999593 (T/C) may be associated with gastric cancer, while rs2228611 (G/A) may be associated with breast cancer. In future research, large-scale and well-designed studies are required to verify these findings.
Collapse
|
12
|
Wu J, Tang Q, Yang L, Chen Y, Zheng F, Hann SS. Interplay of DNA methyltransferase 1 and EZH2 through inactivation of Stat3 contributes to β-elemene-inhibited growth of nasopharyngeal carcinoma cells. Sci Rep 2017; 7:509. [PMID: 28360411 PMCID: PMC5428779 DOI: 10.1038/s41598-017-00626-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
β-elemene, a compound extracted from Curcuma wenyujin plant, exhibits anticancer activity in many cancer types. However, the detailed mechanism by which β-elemene inhibits growth of nasopharyngeal carcinoma (NPC) cells remains unknown. We showed that β-elemene reduced phosphorylation of signal transducer and activator of transcription 3 (Stat3), and protein expressions of DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2). Exogenously expressed Stat3 antagonized the effect of β-elemene on DNMT1 and EZH2 expressions. Furthermore, overexpressions of DNMT1 and EZH2 reversed the effect of β-elemene on phosphorylation of Stat3 and cell growth inhibition. Intriguingly, exogenously expressed DNMT1 overcame β-elemene-inhibited EZH2 protein expression and promoter activity. On the contrary, silencing of EZH2 and DNMT1 genes feedback strengthened the effect of β-elemene on phosphorylation of Stat3. Consistent with this, β-elemene inhibited tumor growth, phosphorylation of Stat3, expressions of DNMT1 and EZH2 in a mouse xenograft model. Collectively, this study shows that β-elemene inhibits NPC cell growth via inactivation of Stat3, and reduces DNMT1 and EZH2 expressions. The interplay of DNMT1 and EZH2, and the mutual regulations among Stat3, EZH2 and DNMT1 contribute to the overall responses of β-elemene. This study uncovers a novel mechanism by which β-elemene inhibits growth of NPC cells.
Collapse
Affiliation(s)
- JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - LiJuan Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - YuQing Chen
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
13
|
Neves M, Ribeiro J, Medeiros R, Sousa H. Genetic polymorphism in DNMTs and gastric cancer: A systematic review and meta-analysis. Porto Biomed J 2016; 1:164-172. [PMID: 32258570 DOI: 10.1016/j.pbj.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
Highlights Single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs) modulate protein expression and affect DNA methylation.Aberrant DNA methylation, have been associated with gastric carcinogenesis.DNMT2 rs11254413 is associated with protection for GC development.DNMT3A rs7560488, DNMT3A rs36012910 and, specially, DNMT1 rs16999593 are associated with increased susceptibility for GC development. Abstract Epigenetics alterations, including aberrant DNA methylation, have been associated with gastric carcinogenesis. Single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs) may influence protein expression and therefore affect DNA regulation and susceptibility for Gastric Cancer (GC).We have performed a systematic review and meta-analysis involving 11 studies and a total of 24 SNPs in DNMTs were analyzed. According to literature, only 4 SNPs, DNMT1 rs16999593, DNMT2 rs11254413 and DNMT3A rs7560488 and DNMT3A rs36012910, were associated with GC. DNMT1 rs16999593 and DNMT3A rs7560488C allele and DNMT3A rs36012910 G allele showed an increased risk for GC. On the other hand, DNMT2 rs11254413 G allele presented a protective effect for GC. Additionally, the meta-analysis evaluated the SNPs analyzed in more than one study (n = 6). Results revealed that only DNMT1 rs16999593 had a statistically significant association with GC development (OR = 1.31; 95% CI = 1.08-1.60; p = 0.006 for TC + CC genotypes).Our study suggests that DNMT2 rs11254413, DNMT3A rs7560488, DNMT3A rs36012910 and, specially, DNMT1 rs16999593 may have an association with GC development. Nevertheless, further studies are need using different populations to clarify this association with GC risk.
Collapse
Affiliation(s)
- Marco Neves
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Research Department, Portuguese League Against Cancer (LPCC-NRNorte), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Research Department, Portuguese League Against Cancer (LPCC-NRNorte), Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| |
Collapse
|
14
|
Li H, Li W, Liu S, Zong S, Wang W, Ren J, Li Q, Hou F, Shi Q. DNMT1, DNMT3A and DNMT3B Polymorphisms Associated With Gastric Cancer Risk: A Systematic Review and Meta-analysis. EBioMedicine 2016; 13:125-131. [PMID: 27789275 PMCID: PMC5264435 DOI: 10.1016/j.ebiom.2016.10.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Increasing studies showed that abnormal changes in single nucleotide polymorphisms (SNPs) of DNMTs (DNMT1, DNMT3A and DNMT3B) were associated with occurrence or decrease of various tumors. However, the associations between DNMTs variations and gastric cancer (GC) risk were still conflicting. We aimed to assess the effect of DNMTs polymorphisms on the susceptibility to GC. METHODS Firstly, we did a meta-analysis for 7 SNPs (rs16999593, rs2228611, rs8101866 in DNMT1, rs1550117, rs13420827 in DNMT3A, rs1569686, rs2424913 in DNMT3B). Four genetic models (homozygote, heterozygote, dominant and recessive model) were used. Moreover, a meta-sensitivity and subgroup analysis was performed to clarify heterogeneity source. Lastly, 17 SNPs that couldn't be meta-analyzed were presented in a systematic review. FINDINGS 20 studies were included, 13 studies could be meta-analyzed and 7 ones could not. Firstly, a meta-analysis on 13 studies (3959 GC cases and 5992 controls) for 7 SNPs showed that GC risk increased in rs16999593 (heterozygote model: OR 1.36, 95%CI 1.14-1.61; dominant model: OR 1.36, 95%CI 1.15-1.60) and rs1550117 (homozygote model: OR 2.03, 95%CI 1.38-3.00; dominant model: OR 1.20, 95%CI 1.01-1.42; recessive model: OR 1.96, 95%CI 1.33-2.89) but decreased in rs1569686 (dominant model: OR 0.74, 95%CI 0.61-0.90). The remaining SNPs were not found associated with GC risk. Furthermore, the subgroup analysis indicated that for rs1550117 and rs1569686, the significant associations were particularly found in people from Chinese Jiangsu province (rs1550117, OR 1.77, 95%CI 1.25-2.51; rs1569686, OR 0.48, 95%CI 0.36-0.64) and that PCR-RFLP was a sensitive method to discover significant associations (rs1550117, OR 1.77, 95%CI 1.25-2.51; rs1569686, OR 0.49, 95%CI 0.37-0.65). Lastly, a systematic review on 7 studies for 17 SNPs suggested that rs36012910, rs7560488 and rs6087990 might have a potential effect on GC initiation. CONCLUSION This meta-analysis demonstrated that rs16999593 and rs1550117 could contribute to GC risk and that rs1569686 might be a protective factor against gastric carcinogenesis. By using these SNPs as biomarkers, it is feasible to estimate the risk of acquiring GC and thus formulate timely preventive strategy.
Collapse
Affiliation(s)
- Hongjia Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wen Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Shanshan Liu
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Shaoqi Zong
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Weibing Wang
- Fudan University School of Public Health, Shanghai 200032, China
| | - Jianlin Ren
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fenggang Hou
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Qi Shi
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
15
|
Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma. Toxicol Appl Pharmacol 2016; 305:103-110. [DOI: 10.1016/j.taap.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/19/2022]
|
16
|
Polymorphisms of the DNA Methyltransferase 1 Gene Predict Survival of Gastric Cancer Patients Receiving Tumorectomy. DISEASE MARKERS 2016; 2016:8578064. [PMID: 27087738 PMCID: PMC4819102 DOI: 10.1155/2016/8578064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/02/2016] [Accepted: 03/08/2016] [Indexed: 01/04/2023]
Abstract
DNA methyltransferase 1 (DNMT1) plays a pivotal role in maintaining DNA methylation status. Polymorphisms of DNMT1 may modify the role of DNMT1 in prognosis of gastric cancer (GC). Our aim was to test whether polymorphisms of DNMT1 gene were associated with overall survival of GC. Four hundred and forty-seven GC patients who underwent radical tumorectomy were enrolled in the study. Five tagging SNPs (rs10420321, rs16999593, rs2228612, rs2228611, and rs2288349) of the DNMT1 gene were genotyped by TaqMan assays. Kaplan-Meier survival plots and Cox proportional hazard regression were used to analyze the associations between SNPs of DNMT1 and survival of GC. Patients carrying rs2228611 GA/AA genotype tended to live longer than those bearing the GG genotype (HR 0.68, 95% CI: 0.51–0.91, P = 0.007). Further multivariate Cox regression analysis showed that rs2228611 was an independent prognostic factor (GA/AA versus GG: OR 0.67, 95% CI 0.49–0.91, P = 0.010). Nevertheless, other SNPs did not show any significant associations with survival of GC. Polymorphisms of the DNMT1 gene may affect overall survival of GC. The SNP rs2228611 has the potentiality to serve as an independent prognostic marker for GC patients.
Collapse
|
17
|
Maekawa R, Sato S, Okada M, Lee L, Tamura I, Jozaki K, Kajimura T, Asada H, Yamagata Y, Tamura H, Yamamoto S, Sugino N. Tissue-Specific Expression of Estrogen Receptor 1 Is Regulated by DNA Methylation in a T-DMR. Mol Endocrinol 2015; 30:335-47. [PMID: 26683811 DOI: 10.1210/me.2015-1058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mechanism controlling tissue-specific expression of estrogen receptor 1 (ESR1) is unclear. In other genes, DNA methylation of a region called the tissue-dependent and differentially methylated region (T-DMR) has been associated with tissue-specific gene expression. This study investigated whether human ESR1 has a T-DMR and whether DNA methylation of the T-DMR regulates its expression. ESR1 expression was tissue-specific, being high in the endometrium and mammary gland and low/nil in the placenta and skin. Therefore, DNA methylation profiles of the promoter of ESR1 were analyzed in these tissues and in breast cancer tissues. In all of the normal tissues, the proximal promoter regions were unmethylated. On the other hand, the distal regions (T-DMR) were unmethylated in the endometrium and mammary gland, but were moderately methylated and hypermethylated in the placenta and skin, respectively. T-DMR-methylated reporter assay was performed to examine whether DNA methylation at the T-DMR suppresses ESR1 transcription. T-DMR, but not the promoter region, had transcriptional activities and DNA methylation of the T-DMR suppressed ESR1 transcription. Early growth response protein 1 was shown to be a possible transcription factor to bind the T-DMR and up-regulate ESR1 expression. ESR1 has several upstream exons, and each upstream exon, Exon-A/Exon-B/Exon-C, had its own T-DMR. In some breast cancer cases and breast cancer cell lines, ESR1 expression was not regulated by DNA methylation at T-DMR as it is in normal tissues. In conclusion, ESR1 has a T-DMR. DNA methylation status at the T-DMR is involved in tissue-specific ESR1 expression in normal tissues but not always in breast cancer.
Collapse
Affiliation(s)
- Ryo Maekawa
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Maki Okada
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Lifa Lee
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Kosuke Jozaki
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Takuya Kajimura
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiromi Asada
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yoshiaki Yamagata
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shigeru Yamamoto
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|