1
|
Liu W, Jiang Q, Sun C, Liu S, Zhao Z, Wu D. Developing a 5-gene prognostic signature for cervical cancer by integrating mRNA and copy number variations. BMC Cancer 2022; 22:192. [PMID: 35184747 PMCID: PMC8859909 DOI: 10.1186/s12885-022-09291-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cervical cancer is frequently detected gynecological cancer all over the world. This study was designed to develop a prognostic signature for an effective prediction of cervical cancer prognosis. Methods Differentially expressed genes (DEGs) were identified based on copy number variation (CNV) data and expression profiles from different databases. A prognostic model was constructed and further optimized by stepwise Akaike information criterion (stepAIC). The model was then evaluated in three groups (training group, test group and validation group). Functional analysis and immune analysis were used to assess the difference between high-risk and low-risk groups. Results The study developed a 5-gene prognostic model that could accurately classify cervical cancer samples into high-risk and low-risk groups with distinctly different prognosis. Low-risk group exhibited more favorable prognosis and higher immune infiltration than high-risk group. Both univariate and multivariate Cox regression analysis showed that the risk score was an independent risk factor for cervical cancer. Conclusions The 5-gene prognostic signature could serve as a predictor for identifying high-risk cervical cancer patients, and provided potential direction for studying the mechanism or drug targets of cervical cancer. The integrated analysis of CNV and mRNA expanded a new perspective for exploring prognostic signatures in cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09291-z.
Collapse
|
2
|
OUP accepted manuscript. Glycobiology 2022; 32:556-579. [DOI: 10.1093/glycob/cwac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
|
3
|
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1875:188464. [PMID: 33157161 DOI: 10.1016/j.bbcan.2020.188464] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Glycosylation is a well-regulated cell and microenvironment specific post-translational modification. Several glycosyltransferases and glycosidases orchestrate the addition of defined glycan structures on the proteins and lipids. Recent advances and systemic approaches in glycomics have significantly contributed to a better understanding of instrumental roles of glycans in health and diseases. Emerging research evidence recognized aberrantly glycosylated proteins as the modulators of the malignant phenotype of cancer cells. The Cancer Genome Atlas has identified alterations in the expressions of glycosylation-specific genes that are correlated with cancer progression. However, the mechanistic basis remains poorly explored. Recent researches have shown that specific changes in the glycan structures are associated with 'stemness' and epithelial-to-mesenchymal transition of cancer cells. Moreover, epigenetic changes in the glycosylation pattern make the tumor cells capable of escaping immunosurveillance mechanisms. The deciphering roles of glycans in cancer emphasize that glycans can serve as a source for the development of novel clinical biomarkers. The ability of glycans in intervening various stages of tumor progression and the biosynthetic pathways involved in glycan structures constitute a promising target for cancer therapy. Advances in the knowledge of innovative strategies for identifying the mechanisms of glycan-binding proteins are hoped to hold great potential in cancer therapy. This review discusses the fundamental role of glycans in regulating tumorigenesis and tumor progression and provides insights into the influence of glycans in the current tactics of targeted therapies in the clinical setting.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashok Kumar Rathinavel
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Xie Q, Li F, Zhao S, Guo T, Li Z, Fang L, Wang S, Liu W, Gu C. GalNAc-T3 and MUC1, a combined predictor of prognosis and recurrence in solitary pulmonary adenocarcinoma initially diagnosed as malignant solitary pulmonary nodule (≤ 3 cm). Hum Cell 2020; 33:1252-1263. [PMID: 32776306 DOI: 10.1007/s13577-020-00400-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The significance of the polypeptide N-acetyl-galactosaminyl transferase-3 (GalNAc-T3) and mucin 1 (MUC1) in solitary pulmonary adenocarcinoma (SPA) initially diagnosed as malignant solitary pulmonary nodule (≤ 3 cm), especially as a combined predictor of prognosis and recurrence, was explored in this study. A retrospective analysis of 83 patients with SPA (≤ 3 cm), which revealed postoperative pathological diagnosis was lung adenocarcinoma after complete resection. Immunohistochemical staining was used to detect the expression of GalNAc-T3 and MUC1 in primary tumor specimens. The relationship between expression and various clinicopathological factors was analyzed, as well as the effects of patients' overall survival (OS) and disease-free survival (DFS). In all patients, GalNAc-T3 was highly expressed in 53 (63.9%) cases; MUC1 was highly expressed in 31 (37.3%) cases. The GalNAc-T3 expression was correlated with differentiation, pathological risk group, N stage, and TNM stage. The group with high GalNAc-T3 expression and low MUC1 expression (GalNAc-T3Hig/MUC1Low) is correlated to pathological differentiation and has a trend related to the TNM stage. The patients with better differentiation, lower pathological risk group, lower N stage, and GalNAc-T3 high expression had better overall survival, especially the GalNAc-T3Hig/MUC1Low group. Moreover, the moderate differentiation, N3 stage, and GalNAc-T3Hig/MUC1Low group were independent predictive factors for OS. Besides, patients with lower N stage, lower TNM stage, higher GalNAc-T3 expression got better disease-free survival (DFS), especially the GalNAc-T3Hig/MUC1Low group. The GalNAc-T3Hig/MUC1Low group was an independent predictive factor for DFS. In conclusion, GalNAc-T3 and MUC1 were combined predictors of prognosis and recurrence in SPA (≤ 3 cm).
Collapse
Affiliation(s)
- Qiang Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Lei Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Shiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Wenzhi Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China.
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Fujiwara N, Kitamura N, Yoshida K, Yamamoto T, Ozaki K, Kudo Y. Involvement of Fusobacterium Species in Oral Cancer Progression: A Literature Review Including Other Types of Cancer. Int J Mol Sci 2020; 21:ijms21176207. [PMID: 32867334 PMCID: PMC7504605 DOI: 10.3390/ijms21176207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation caused by infections has been suggested to be one of the most important cause of cancers. It has recently been shown that there is correlation between intestinal bacteria and cancer development including metastasis. As over 700 bacterial species exist in an oral cavity, it has been concerning that bacterial infection may cause oral cancer. However, the role of bacteria regarding tumorigenesis of oral cancer remains unclear. Several papers have shown that Fusobacterium species deriving the oral cavities, especially, play a crucial role for the development of colorectal and esophageal cancer. F. nucleatum is a well-known oral bacterium involved in formation of typical dental plaque on human teeth and causing periodontal diseases. The greatest characteristic of F. nucleatum is its ability to adhere to various bacteria and host cells. Interestingly, F. nucleatum is frequently detected in oral cancer tissues. Moreover, detection of F. nucleatum is correlated with the clinical stage of oral cancer. Although the detailed mechanism is still unclear, Fusobacterium species have been suggested to be associated with cell adhesion, tumorigenesis, epithelial-to-mesenchymal transition, inflammasomes, cell cycle, etc. in oral cancer. In this review, we introduce the reports focused on the association of Fusobacterium species with cancer development and progression including oral, esophageal, and colon cancers.
Collapse
Affiliation(s)
- Natsumi Fujiwara
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
- Department of Oral Biology & Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kaya Yoshida
- Department of Oral Health Care Education, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan;
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
- Correspondence: ; Tel.: +81-88-633-7325
| |
Collapse
|
6
|
Rasheduzzaman M, Kulasinghe A, Dolcetti R, Kenny L, Johnson NW, Kolarich D, Punyadeera C. Protein glycosylation in head and neck cancers: From diagnosis to treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188422. [PMID: 32853734 DOI: 10.1016/j.bbcan.2020.188422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Glycosylation is the most common post-translational modification (PTM) of proteins. Malignant tumour cells frequently undergo an alteration in surface protein glycosylation. This phenomenon is also common in cancers of the head and neck, most of which are squamous cell carcinomas (HNSCC). It affects cell functions, including proliferation, motility and invasiveness, thus increasing the propensity to metastasise. HNSCC represents the sixth most frequent malignancy worldwide. These neoplasms, which arise from the mucous membranes of the various anatomical subsites of the upper aero-digestive tract, are heterogeneous in terms of aetiology and clinico-pathologic features. With current treatments, only about 50% of HNSCC patients survive beyond 5-years. Therefore, there is the pressing need to dissect NHSCC heterogeneity to inform treatment choices. In particular, reliable biomarkers of predictive and prognostic value are eagerly needed. This review describes the current state of the art and bio-pathological meaning of glycosylation signatures associated with HNSCC and explores the possible role of tumour specific glycoproteins as potential biomarkers and attractive therapeutic targets. We have also compiled data relating to altered glycosylation and the nature of glycoproteins as tools for the identification of circulating tumour cells (CTCs) in the new era of liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Rasheduzzaman
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arutha Kulasinghe
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Riccardo Dolcetti
- Translational Research Institute, Woolloongabba, QLD, Australia.; The University of Queensland Diamantina Institute, 37 Kent Street Woolloongabba, QLD 4102, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Joyce Tweddell Building, Herston, QLD, 4029, Australia
| | - Newell W Johnson
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London, United Kingdom
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD, Australia.
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia..
| |
Collapse
|
7
|
Duan J, Chen L, Gao H, Zhen T, Li H, Liang J, Zhang F, Shi H, Han A. GALNT6 suppresses progression of colorectal cancer. Am J Cancer Res 2018; 8:2419-2435. [PMID: 30662801 PMCID: PMC6325480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Invasion and metastasis are the main cause of mortality in most CRC patients. Polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6) regulated glycosylation, which is frequently altered in cancers, and play an important role in cancer development. However, the role of GALNT6 in CRC remains unknown. To investigate the role of GALNT6 in CRC, first we studied correlation of GALNT6 expression levels with outcomes of CRC patients and found CRC patients with higher expression of GALNT6 had a better overall survival than those with lower expression. In addition, GALNT6 expression were significantly associated with tumor size, histological differentiation and lymph node metastasis. In vitro, GALNT6 overexpression dramatically inhibited cellular colony formation, migration, and invasion, and promoted the apoptosis of CRC cells. In vivo, CRC with GALNT6 overexpression showed reduced pulmonary metastasis in recipient mice compared with the controls. GALNT6 expression was significantly increased in SW480 and SW1116 cells cultured in hypoxic condition, and decreased in HT29 and LOVO cells with oxidative stress. Affimetrix microarray analysis showed that GALNT6 overexpression induced 279 genes up-regulated and 215 genes down-regulated in CRC. GALNT6 overexpression dramatically suppressed AKT and activated CD28 signaling pathway in CRC. AKT rescue experiment found that AKT was involved in GALNT6-induced CRC cell migration and invasion. In conclusion, our results first suggest that GALNT6 plays an important role in development and progression of CRC as a tumor suppressor gene.
Collapse
Affiliation(s)
- Jing Duan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Lin Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Tiantian Zhen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Jiangtao Liang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Fenfen Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
8
|
Balcik-Ercin P, Cetin M, Yalim-Camci I, Odabas G, Tokay N, Sayan AE, Yagci T. Genome-wide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors. Cell Oncol (Dordr) 2018; 41:379-393. [PMID: 29516288 DOI: 10.1007/s13402-018-0375-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND ZEB2 is a transcriptional repressor that regulates epithelial-to-mesenchymal transition (EMT) through binding to bipartite E-box motifs in gene regulatory regions. Despite the abundant presence of E-boxes within the human genome and the multiplicity of pathophysiological processes regulated during ZEB2-induced EMT, only a small fraction of ZEB2 targets has been identified so far. Hence, we explored genome-wide ZEB2 binding by chromatin immunoprecipitation-sequencing (ChIP-seq) under endogenous ZEB2 expression conditions. METHODS For ChIP-Seq we used an anti-ZEB2 monoclonal antibody, clone 6E5, in SNU398 hepatocellular carcinoma cells exhibiting a high endogenous ZEB2 expression. The ChIP-Seq targets were validated using ChIP-qPCR, whereas ZEB2-dependent expression of target genes was assessed by RT-qPCR and Western blotting in shRNA-mediated ZEB2 silenced SNU398 cells and doxycycline-induced ZEB2 overexpressing colorectal carcinoma DLD1 cells. Changes in target gene expression were also assessed using primary human tumor cDNA arrays in conjunction with RT-qPCR. Additional differential expression and correlation analyses were performed using expO and Human Protein Atlas datasets. RESULTS Over 500 ChIP-Seq positive genes were annotated, and intervals related to these genes were found to include the ZEB2 binding motif CACCTG according to TOMTOM motif analysis in the MEME Suite database. Assessment of ZEB2-dependent expression of target genes in ZEB2-silenced SNU398 cells and ZEB2-induced DLD1 cells revealed that the GALNT3 gene serves as a ZEB2 target with the highest, but inversely correlated, expression level. Remarkably, GALNT3 also exhibited the highest enrichment in the ChIP-qPCR validation assays. Through the analyses of primary tumor cDNA arrays and expO datasets a significant differential expression and a significant inverse correlation between ZEB2 and GALNT3 expression were detected in most of the tumors. We also explored ZEB2 and GALNT3 protein expression using the Human Protein Atlas dataset and, again, observed an inverse correlation in all analyzed tumor types, except malignant melanoma. In contrast to a generally negative or weak ZEB2 expression, we found that most tumor tissues exhibited a strong or moderate GALNT3 expression. CONCLUSIONS Our observation that ZEB2 negatively regulates a GalNAc-transferase (GALNT3) that is involved in O-glycosylation adds another layer of complexity to the role of ZEB2 in cancer progression and metastasis. Proteins glycosylated by GALNT3 may be exploited as novel diagnostics and/or therapeutic targets.
Collapse
Affiliation(s)
- Pelin Balcik-Ercin
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Metin Cetin
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Irem Yalim-Camci
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Gorkem Odabas
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - Nurettin Tokay
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey
| | - A Emre Sayan
- Faculty of Medicine, Cancer Sciences, University of Southampton, Somers Building, Tremona Road, Southampton, SO16 6YD, UK
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Laboratory of Molecular Oncology, Gebze Technical University, C2-Building, 41400, Gebze-Kocaeli, Turkey.
| |
Collapse
|
9
|
Shioya A, Guo X, Motono N, Mizuguchi S, Kurose N, Nakada S, Aikawa A, Ikeda Y, Uramoto H, Yamada S. The Combination Of Weak Expression Of PRDX4 And Very High MIB-1 Labelling Index Independently Predicts Shorter Disease-free Survival In Stage I Lung Adenocarcinoma. Int J Med Sci 2018; 15:1025-1034. [PMID: 30013444 PMCID: PMC6036164 DOI: 10.7150/ijms.25734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Oxidative stress plays pivotal roles in the progression of lung adenocarcinoma (LUAD) through cell signaling related closely to cancer growth. We previously reported that peroxiredoxin 4 (PRDX4), a secretory-type antioxidant enzyme, can protect against the development of various diseases, including potential malignancies. Since many patients with early-stage LUAD develop recurrence, even after curative complete resection, we investigated the association of the PRDX4 expression with the clinicopathological features and recurrence/prognosis using post-surgical samples of stage I-LUAD. Methods: The expression of PRDX4 and MIB-1, a widely accepted Ki67 protein, was immunohistochemically analysed in 206 paraffin-embedded tumour specimens of patients with stage I-LUAD. The PRDX4 expression was considered to be weak when less than 25% of the adenocarcinoma cells showed positive staining. Results: A weak PRDX4+ expression demonstrated a significantly close relationship with pathologically poor differentiation, highly invasive characteristics and recurrence. The decrease in PRDX4-positivity potentially induced cell growth in LUAD, which was correlated significantly with a very high MIB-1 labelling index (≥17.3%). Univariate/multivariate analyses revealed that the subjects with both weak PRDX4+ expression and a very high MIB-1 index had significantly worse disease-free survival rates than other subjects. Conclusions: The combination of weak PRDX4 expression and a very high MIB-1 index can predict high proliferating activity and recurrence with a potential poor prognosis, especially in post-operative stage I-LUAD patients.
Collapse
Affiliation(s)
- Akihiro Shioya
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa
| | - Seiya Mizuguchi
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Nozomu Kurose
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Satoko Nakada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Akane Aikawa
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| |
Collapse
|
10
|
Polypeptide N-acetylgalactosaminyltransferase-6 expression independently predicts poor overall survival in patients with lung adenocarcinoma after curative resection. Oncotarget 2018; 7:54463-54473. [PMID: 27276675 PMCID: PMC5342355 DOI: 10.18632/oncotarget.9810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background Polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) are important glycosyltransferases in cancer, but the clinical role of its individual isoforms is unclear. We investigated the clinical significance and survival relevance of one isoform, GalNAc-T6 in lung adenocarcinoma after curative resection. Results GalNAc-T6 was identified in 27.8% (55/198) of patients, and statistically indicated advanced TNM stage (P = 0.069). Multivariate analysis showed GalNAc-T6 to be an independent predictor for reduced overall survival of patients (P = 0.027), and the result was confirmed with bootstraping techniques, and on line “Kaplan-Meier Plotter” and “SurvExpress” database analysis, respectively. Moreover, ROC curve demonstrated that GalNAc-T6 expression significantly improved the accuracy of survival prediction. Methods With 198 paraffin-embedded tumor samples from lung adenocarcinoma patients, GalNAc-T6 expression was immunohistochemically assessed for the association with clinicopathological parameters. The prognostic significance was evaluated by Cox proportional hazards regression analysis with 1000 bootstraping. “Kaplan-Meier Plotter”, “SurvExpress” database analysis, and receiver-operating characteristic (ROC) curve were performed to provide further validation. Conclusions GalNAc-T6 expression correlated significantly with advanced TNM stage, and independently predicted worse OS for lung adenocarcinoma.
Collapse
|
11
|
Liang KH, Yeh CT. O-glycosylation in liver cancer: Clinical associations and potential mechanisms. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: A review of the literature. J Craniomaxillofac Surg 2017; 45:722-730. [DOI: 10.1016/j.jcms.2017.01.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/22/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
|
13
|
Nguyen TT, Kurita T, Koi C, Murakami M, Kagami S, Hachisuga T, Masanori H, Morimoto Y, Izumi H. GalNAc-T6 in the relationship with invasion ability of endometrial carcinomas and prognostic significance. Am J Cancer Res 2017; 7:1188-1197. [PMID: 28560066 PMCID: PMC5446483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023] Open
Abstract
O-glycosylation in the field of carcinogenesis has been a critical topic of concern for several decades. The abnormal function of enzymes catalyzing the first step of this process, named polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) has been determined to play an important role in cancer development and metastasis. Accordingly, we investigated the expression of GalNAc-T6 in endometrial carcinoma and evaluated the relationship between invasion characteristics and the cellular level of GalNAc-T6. The results suggested that positive GalNAc-T6 expression is significantly associated with histological grade of tumors and myometrial invasion characteristic. In vitro experiments showed that the over expression of GalNAc-T6 had strong association with the decrease of endometrial cell invasiveness. Taken together, our data support the use of GalNAc-T6 as a potential indicator of good prognosis and noninvasive tumor in patients with endometrial carcinoma.
Collapse
Affiliation(s)
- Thuy Thi Nguyen
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Tomoko Kurita
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Chiho Koi
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Midori Murakami
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Seiji Kagami
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Toru Hachisuga
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Hisaoka Masanori
- Department of Pathology and Oncology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, University of Occupational and Environmental Health, School of Medicine1-1 Iseigaoka, 807-8555, Yahatanishi, Kitakyushu, Japan
| |
Collapse
|
14
|
Song L, Linstedt AD. Inhibitor of ppGalNAc-T3-mediated O-glycosylation blocks cancer cell invasiveness and lowers FGF23 levels. eLife 2017; 6:e24051. [PMID: 28362263 PMCID: PMC5407854 DOI: 10.7554/elife.24051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023] Open
Abstract
Small molecule inhibitors of site-specific O-glycosylation by the polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T) family are currently unavailable but hold promise as therapeutics, especially if selective against individual ppGalNAc-T isozymes. To identify a compound targeting the ppGalNAc-T3 isozyme, we screened libraries to find compounds that act on a cell-based fluorescence sensor of ppGalNAc-T3 but not on a sensor of ppGalNAc-T2. This identified a hit that subsequent in vitro analysis showed directly binds and inhibits purified ppGalNAc-T3 with no detectable activity against either ppGalNAc-T2 or ppGalNAc-T6. Remarkably, the inhibitor was active in two medically relevant contexts. In cell culture, it opposed increased cancer cell invasiveness driven by upregulated ppGalNAc-T3 suggesting the inhibitor might be anti-metastatic. In cells and mice, it blocked ppGalNAc-T3-mediated glycan-masking of FGF23 thereby increasing its cleavage, a possible treatment of chronic kidney disease. These findings establish a pharmacological approach for the ppGalNAc-transferase family and suggest that targeting specific ppGalNAc-transferases will yield new therapeutics.
Collapse
Affiliation(s)
- Lina Song
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| | - Adam D Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
15
|
Yamada S, Nawata A, Yoshioka M, Hiraki T, Higashi M, Hatanaka K, Tanimoto A. Complete regression of primary cutaneous malignant melanoma associated with distant lymph node metastasis: a teaching case mimicking blue nevus. BMC Res Notes 2016; 9:366. [PMID: 27456492 PMCID: PMC4960676 DOI: 10.1186/s13104-016-2174-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malignant melanoma (MM) tends to be spontaneously regressed, however, complete regression of primary cutaneous MM is an extremely rare phenomenon. Our aim is to be aware that pathologists and/or dermatologists can readily misinterpret it as the other benign or malignant lesions. CASE PRESENTATION A gradually growing and verrucous hypopigmented macule had been noticed in the right sole of a 65-year-old Japanese male since 2 years before, and it turned to be a solitary bluish to black patch with surrounding depigmentation and was recently decreased in size. In parallel, the patient had a rapidly growing black-pigmented mass lesion at the right inguen. The cutaneous specimen from the sole showed an aggregation of many melanophages predominantly in the middle to deep layer of dermis, associated with surrounding fibrosis, reactive vascular proliferation and CD8-positive T-lymphocytic infiltrate, covered by attenuated epidermis with absence of rete ridge. However, no remnant MM cells were completely seen in the step-serial sections. We first interpreted it as blue nevus. By contrast, the inguinal mass revealed a diffuse proliferation of highly atypical mono- to multi-nucleated large cells having abundant eosinophilic cytoplasm in the enlarged lymph node tissue. Immunohistochemical findings demonstrated that these atypical cells were specifically positive for HMB45 and Melan A. Therefore, we finally made a diagnosis of complete regression of primary cutaneous MM associated with distant lymph node metastasis of MM. CONCLUSION Careful, not only general/cutaneous but histopathological, examinations should be necessary and adjunctive aids for reaching the correct diagnosis of complete regression of cutaneous MM.
Collapse
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Aya Nawata
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Yoshioka
- Department of Dermatology and Immunology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tsubasa Hiraki
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiyo Higashi
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhito Hatanaka
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
16
|
Zielinski T, Reichman M, Donover PS, Lowery RG. Development and Validation of a Universal High-Throughput UDP-Glycosyltransferase Assay with a Time-Resolved FRET Signal. Assay Drug Dev Technol 2016; 14:240-51. [PMID: 27136323 DOI: 10.1089/adt.2016.711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glycosyltransferase enzymes play diverse metabolic and regulatory roles by catalyzing the transfer of sugar molecules to protein, lipid, and carbohydrate acceptors, and they are increasingly of interest as therapeutic targets in a number of diseases, including metabolic disorders, cancer, and infectious diseases. The glycosyltransferases are a challenging target class from an assay development perspective because of the diversity of both donor and acceptor substrates and the lack of suitable glycan detection methods. However, many glycosyltransferases use uridine 5'-diphosphate (UDP) sugars as donor substrates, and detection of the free UDP reaction product provides a generic approach for measuring the activity of those enzymes. To exploit this approach for a broadly applicable high-throughput screening (HTS) assay for discovery of glycosyltransferase inhibitors, we developed a Transcreener(®) assay for immunodetection of UDP with a time-resolved Förster resonance energy transfer (TR-FRET) signal. We optimized the assay for detection of glycosyltransferase activity with nucleotide diphosphate (NDP) sugars at concentrations from 10 μM to 1 mM, achieving Z' values of 0.6 or higher. The assay was validated by orthogonal pooled screening with 8,000 compounds using polypeptide N-acetylgalactosaminyltransferase T3 as the target, and the hits were confirmed using an orthogonal readout. The reagents and signal were both stable for more than 8 h at room temperature, insuring robust performance in automated HTS environments. The TR-FRET-based UDP detection assay provides a broadly applicable approach for screening glycosyltransferases that use a UDP-sugar donor.
Collapse
Affiliation(s)
| | - Melvin Reichman
- 2 Lankenau Institute for Medical Research , Wynnewood, Pennsylvania
| | | | | |
Collapse
|