1
|
Wu M, Feng L, Wang Y, Zhang K, Lan G, Liang J. MiRNA-455-5p regulates the growth and development of adipose tissue by targeting
IGF-1R
gene. JOURNAL OF APPLIED ANIMAL RESEARCH 2024; 52. [DOI: 10.1080/09712119.2024.2399510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Min Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Lingli Feng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Yubin Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Kun Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Ganqiu Lan
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| | - Jing Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Guangxi Nanning, People’s Republic of China
| |
Collapse
|
2
|
Wang J, Wang X, Liu Z, Li S, Yin W. IGFBP7 promotes gastric cancer by facilitating epithelial-mesenchymal transition of gastric cells. Heliyon 2024; 10:e30986. [PMID: 38778944 PMCID: PMC11108983 DOI: 10.1016/j.heliyon.2024.e30986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Gastric cancer (GC) with high morbidity and mortality is one major cause of tumor-related death. Mechanisms underlying GC invasion and metastasis remain unclear. IGFBP7 exerted variable effects in different cancers and its role in GC is controversial. Here, IGFBP7 was found to be upregulated and elevated IGFBP7 expression represented a poorer overall survival in GC using bioinformatics analysis. Moreover, IGFBP7 was up-regulated in human GC specimens and promoted tumor growth in xenograft tumor animals. For GC cell lines, we found that IGFBP7 was also upregulated and facilitated the cell malignant behavior and EMT of GC cells, which may involve NF-κB and ERK signaling pathways. This research may provide new avenues for GC therapy.
Collapse
Affiliation(s)
- Jinqing Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Xinxin Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Zhaorui Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Sheng Li
- Shandong University Cancer Center, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenbin Yin
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Zheng S, Lin N, Wu Q, He H, Yang C. Prognostic model construction and validation of esophageal cancer cellular senescence-related genes and correlation with immune infiltration. Front Surg 2023; 10:1090700. [PMID: 36761024 PMCID: PMC9905418 DOI: 10.3389/fsurg.2023.1090700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Cellular senescence is a cellular response to stress, including the activation of oncogenes, and is characterized by irreversible proliferation arrest. Restricted studies have provided a relationship between cellular senescence and immunotherapy for esophageal cancer. Methods In the present study, we obtained clinical sample of colon cancer from the TCGA database and cellular senescence-related genes from MSigDB and Genecard datasets. Cellular senescence-related prognostic genes were identified by WGCNA, COX, and lasso regression analysis, and a cellular senescence-related risk score (CSRS) was calculated. We constructed a prognostic model based on CSRS. Validation was performed with an independent cohort that GSE53625. Three scoring systems for immuno-infiltration analysis were performed, namely ssGSEA analysis, ESTIMATE scores and TIDE scores. Result Five cellular senescence-related genes, including H3C1, IGFBP1, MT1E, SOX5 and CDHR4 and used to calculate risk score. Multivariate regression analysis using cox regression model showed that cellular senescence-related risk scores (HR=2.440, 95% CI=1.154-5.159, p=0.019) and pathological stage (HR=2.423, 95% CI=1.119-5.249, p=0.025) were associated with overall survival (OS). The nomogram model predicts better clinical benefit than the American Joint Committee on Cancer (AJCC) staging for prognosis of patients with esophageal cancer with a five-year AUC of 0.946. Patients with high CSRS had a poor prognosis (HR=2.93, 95%CI=1.74-4.94, p<0.001). We observed differences in the distribution of CSRS in different pathological staging and therefore performed a subgroup survival analysis finding that assessment of prognosis by CSRS independent of pathological staging. Comprehensive immune infiltration analysis and functional enrichment analysis suggested that patients with high CSRS may develop immunotherapy resistance through mechanisms of deacetylation and methylation. Discussion In summary, our study suggested that CSRS is a prognostic risk factor for esophageal cancer. Patients with high CSRS may have worse immunotherapy outcomes.
Collapse
Affiliation(s)
- Shiyao Zheng
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China,Department of Gastrointestinal Surgical Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Nan Lin
- Fuzong Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Qing Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxin He
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China,Department of Gastrointestinal Surgical Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Chunkang Yang
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China,Department of Gastrointestinal Surgical Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China,Correspondence: Chunkang Yang
| |
Collapse
|
4
|
Geng C, Wang Q, Xing PF, Wang M, Tong SD, Zhou JY. Effects and mechanisms of GSG2 in esophageal cancer progression. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04260-2. [PMID: 35939116 DOI: 10.1007/s00432-022-04260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Esophageal cancer was recognized as one of the malignant tumors with poor prognosis. Germ cell associated 2 (GSG2) has been reported to be of great significance in cell growth and tumor formation. This study aimed to investigate the biological function and molecular mechanism of GSG2 in esophageal cancer. METHODS First, relationship between GSG2 expression and tumor characteristics in esophageal cancer patients was analyzed through immunohistochemical (IHC) staining. MTT assay, flow cytometry, cloning formation assay, wound-healing assay and Transwell assay were used to determine proliferation, apoptosis and migration of esophageal cancer cell with GSG2 knockdown in vitro. Expression of apoptosis related proteins and downstream pathway proteins after GSG2 knockdown were detected through Human Apoptosis Antibody Array and western blot analysis. The GSG2 knockdown function in vivo was explored through a xenograft tumor model. RESULTS GSG2 was highly expressed in tumor tissues, which has clinical significance in predicting the malignant degree of patients with esophageal cancer. In addition, GSG2 knockdown significantly inhibited a variety of malignant biological behaviors of esophageal cancer cells, such as inhibiting proliferation, reducing colony formation, promoting apoptosis, hindering migration. The decrease of GSG2 expression in esophageal cancer cells can inhibit the xenograft tumor growth. CONCLUSIONS In conclusion, GSG2 was involved in esophageal cancer progression and development, which may provide an effective molecular target for the treatment of esophageal cancer in the future.
Collapse
Affiliation(s)
- Chong Geng
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Province, No.188 Shizi street, Suzhou, 215006, China
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Peng-Fei Xing
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Min Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Shao-Dong Tong
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Province, No.188 Shizi street, Suzhou, 215006, China.
| |
Collapse
|
5
|
Association of insulin-like growth factor binding protein-7 promoter methylation with esophageal cancer in peripheral blood. Mol Biol Rep 2022; 49:3423-3431. [PMID: 35076852 DOI: 10.1007/s11033-022-07173-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/19/2022] [Indexed: 10/25/2022]
Abstract
BACKGROUND The insulin-like growth factor (IGF) signaling pathway has an important role in many cancers, including esophageal cancer (EC). IGF-binding protein 7 (IGFBP7) is one of the proteins in this signaling pathway, and its role in cancer has not yet been fully clarified. In the present study, we evaluated the clinical relevance of IGFBP7 methylation status and mRNA expression in EC patients compared to healthy controls. We also investigated whether IGFBP7 methylation status affects mRNA expression. METHODS The study comprised 100 EC patients and 105 healthy controls. Methylation specific PCR (MSP) was used to examine IGFBP7's promoter methylation and real-time quantitative reverse transcription PCR (qRT-PCR) was used to assess IGFBP7 mRNA expression. RESULTS The IGFBP7 promoter methylation was significantly higher in controls than in EC patients (p < 0.05). IGFBP7 mRNA expression was significantly lower in EC patients compared to controls, especially in those over 55 years old (p < 0.0001). The globulin level and reflux were significantly higher in IGFBP7-unmethylated patients compared to IGFBP7 methylated patients (p = 0.01). In EC patients, however, there was no significant relationship between IGFBP7 mRNA expression and methylation in the peripheral blood (p = 0.33). In addition, neither IGFBP7 mRNA expression nor methylation were shown to be linked with survival (p > 0.05). CONCLUSION Our study indicated that promoter unmethylation and mRNA expression of the IGFBP7 promoter in peripheral blood could be different biomarkers for EC. Furthermore, unmethylation of the IGFBP7 promoter in EC patients was associated with reflux and elevated globulin levels. More studies with a larger number of cases is needed to confirm this association.
Collapse
|
6
|
Liu H, Gu H, Kutbi EH, Tan SC, Low TY, Zhang C. Association of IGF-1 and IGFBP-3 levels with gastric cancer: A systematic review and meta-analysis. Int J Clin Pract 2021; 75:e14764. [PMID: 34469629 DOI: 10.1111/ijcp.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Many studies have investigated the association between serum IGF-1 and IGFBP levels with gastric cancer (GC), but the results remained inconclusive. In this work, we performed a systematic review and meta-analysis to examine the precise association of serum levels of IGF-1 and IGFBP with GC. METHODS A comprehensive systematic search was carried out in PubMed/MEDLINE, SCOPUS, Web of Science, and EMBASE databases for (nested) case-control studies that reported the levels of IGF-1 and IGFBP in GC cases and healthy controls, from inception until October 2020. Weighted mean difference (WMD) was calculated for estimating combined effect size. Subgroup analysis was performed to identify the source of heterogeneity among studies. RESULTS We found eight and five eligible studies (with 1541 participants) which provided data for IGF-1 and IGFBP, respectively. All studies on IGFBP reported the IGFBP-3 isoform. The pooled results indicate that GC patients had significantly lower serum IGF-1 [WMD = -26.21 ng/mL (95% CI, -45.58 to -6.85; P = .008)] and IGFBP-3 [WMD = -0.41 ng/mL (95% CI, -0.80 to -0.01; P = .04; I2 = 89.9%; P < .001)] levels than those in healthy subjects. Significant heterogeneity was observed in the association, which could be attributed to the sample size of the studies. CONCLUSIONS In conclusion, our study reveals a significantly lower level of IGF-1 and IGFBP-3 in GC patients compared with healthy control subjects.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Pathology, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar, China
| | - Huxia Gu
- Department of Network Information, Fuling Central Hospital of Chongqing city, Chongqing, China
| | - Emad H Kutbi
- Biorepository Department, Biomedical Research Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chong Zhang
- Department of Pathology, Fuling Central Hospital of Chongqing city, Chongqing, China
| |
Collapse
|
7
|
Liu Q, Jiang J, Zhang X, Zhang M, Fu Y. Comprehensive Analysis of IGFBPs as Biomarkers in Gastric Cancer. Front Oncol 2021; 11:723131. [PMID: 34745945 PMCID: PMC8567138 DOI: 10.3389/fonc.2021.723131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Gastric cancer is the fifth most common cancer worldwide and the third leading cause of cancer-related deaths. Insulin-like growth-factor-binding proteins (IGFBPs) were initially identified as passive inhibitors that combined with insulin-like growth factors (IGFs) in serum. However, more recent data have shown that they have different expression patterns and a variety of functions in the development and occurrence of cancers. Thus, their various roles in cancer still need to be elucidated. This study aimed to explore the IGFBPs and their prognostic value as markers in gastric cancer. METHODS Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, cBioPortal, GeneMANIA, and TIMER were used to analyze the differential expression, prognostic value, genetic alteration, and association with immune cell infiltration of IGFPBs in gastric cancer. RESULTS Expression levels of IGFBP3, IGFBP4, and IGFBP7 were significantly elevated in gastric cancer tissues, whereas those of IGFBP1 were reduced in normal tissues. IGFBP1/5/7 expression was significantly associated with overall survival whereas IGFBP6/7 expression was significantly correlated with disease-free survival in gastric cancer patients. IGFBP3/5/6/7 were associated with clinical cancer stage. Gene ontology and Kyoto Encyclopedia of Genes and Genome analyses showed that IGFBP3/5/7 were mainly enriched in focal adhesion, extracellular matrix structural constituent, cell-substratist junction, extracellular structure, and matrix organization. Stomach adenocarcinoma (STAD) and gastric cancer had more IGFBP1-7 mutations than other tumor types. Hub gene analysis showed that TP53 and IGF2 expression was significantly elevated in STAD patients; PLG, PAPPA, AFP, and CYR61 were associated with overall survival rate; and IGFALS, PLG, IGF1, AHSG, and FN1 were associated with disease-free survival. Finally, IGFBP3-7 were all associated with cancer-associated fibroblast infiltration in STAD, colon adenocarcinoma, and rectal adenocarcinoma. CONCLUSION Our study provides a comprehensive analysis and selection of IGFBPs as prognostic biomarkers in STAD. This was the first bioinformatic analysis study to describe the involvement of IGFBPs, especially IGFBP7, in gastric cancer development through the extracellular matrix.
Collapse
Affiliation(s)
- Qi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meixiang Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Dighe SG, Chen J, Yan L, He Q, Gharahkhani P, Onstad L, Levine DM, Palles C, Ye W, Gammon MD, Iyer PG, Anderson LA, Liu G, Wu AH, Dai JY, Chow WH, Risch HA, Lagergren J, Shaheen NJ, Bernstein L, Corley DA, Prenen H, deCaestecker J, MacDonald D, Moayyedi P, Barr H, Love SB, Chegwidden L, Attwood S, Watson P, Harrison R, Ott K, Moebus S, Venerito M, Lang H, Mayershofer R, Knapp M, Veits L, Gerges C, Weismüller J, Gockel I, Vashist Y, Nöthen MM, Izbicki JR, Manner H, Neuhaus H, Rösch T, Böhmer AC, Hölscher AH, Anders M, Pech O, Schumacher B, Schmidt C, Schmidt T, Noder T, Lorenz D, Vieth M, May A, Hess T, Kreuser N, Becker J, Ell C, Ambrosone CB, Moysich KB, MacGregor S, Tomlinson I, Whiteman DC, Jankowski J, Schumacher J, Vaughan TL, Madeleine MM, Hardie LJ, Buas MF. Germline variation in the insulin-like growth factor pathway and risk of Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis 2020; 42:369-377. [PMID: 33300568 PMCID: PMC8052954 DOI: 10.1093/carcin/bgaa132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies (GWAS) of esophageal adenocarcinoma (EAC) and its precursor, Barrett's esophagus (BE), have uncovered significant genetic components of risk, but most heritability remains unexplained. Targeted assessment of genetic variation in biologically relevant pathways using novel analytical approaches may identify missed susceptibility signals. Central obesity, a key BE/EAC risk factor, is linked to systemic inflammation, altered hormonal signaling and insulin-like growth factor (IGF) axis dysfunction. Here, we assessed IGF-related genetic variation and risk of BE and EAC. Principal component analysis was employed to evaluate pathway-level and gene-level associations with BE/EAC, using genotypes for 270 single-nucleotide polymorphisms (SNPs) in or near 12 IGF-related genes, ascertained from 3295 BE cases, 2515 EAC cases and 3207 controls in the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) GWAS. Gene-level signals were assessed using Multi-marker Analysis of GenoMic Annotation (MAGMA) and SNP summary statistics from BEACON and an expanded GWAS meta-analysis (6167 BE cases, 4112 EAC cases, 17 159 controls). Global variation in the IGF pathway was associated with risk of BE (P = 0.0015). Gene-level associations with BE were observed for GHR (growth hormone receptor; P = 0.00046, false discovery rate q = 0.0056) and IGF1R (IGF1 receptor; P = 0.0090, q = 0.0542). These gene-level signals remained significant at q < 0.1 when assessed using data from the largest available BE/EAC GWAS meta-analysis. No significant associations were observed for EAC. This study represents the most comprehensive evaluation to date of inherited genetic variation in the IGF pathway and BE/EAC risk, providing novel evidence that variation in two genes encoding cell-surface receptors, GHR and IGF1R, may influence risk of BE.
Collapse
Affiliation(s)
- Shruti G Dighe
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qianchuan He
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lynn Onstad
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David M Levine
- Department of Biostatistics, University of Washington, School of Public Health, Seattle, WA, USA
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Weimin Ye
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lesley A Anderson
- Department of Epidemiology and Public Health, Queen’s University of Belfast, Royal Group of Hospitals, Belfast, UK
| | - Geoffrey Liu
- Department of Pharmacogenomic Epidemiology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Anna H Wu
- Department of Preventive Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - James Y Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wong-Ho Chow
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Jesper Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Department of Surgery, School of Cancer and Pharmaceutical Sciences, King’s College London
| | - Nicholas J Shaheen
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA,Gastroenterology, San Francisco Medical Center, Kaiser Permanente Northern California, San Francisco, California, USA
| | - Hans Prenen
- Oncology Department, University Hospital Antwerp, Edegem, Belgium
| | - John deCaestecker
- Digestive Diseases Centre, University Hospitals of Leicester, Leicester, UK
| | - David MacDonald
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Moayyedi
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hugh Barr
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester, UK
| | - Sharon B Love
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK; MRC Clinical Trials Unit at University College London, London, UK
| | - Laura Chegwidden
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Stephen Attwood
- Department of General Surgery, North Tyneside General Hospital, North Shields, UK
| | - Peter Watson
- Department of Medicine, Institute of Clinical Science, Royal Victoria Hospital, Belfast, UK
| | - Rebecca Harrison
- Department of Pathology, Leicester Royal Infirmary, Leicester, UK
| | - Katja Ott
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany,Department of General, Visceral and Thorax Surgery, RoMed Klinikum Rosenheim, Rosenheim, Germany
| | - Susanne Moebus
- Biometry and Epidemiology, Institute for Urban Public Health, University Hospitals, University of Duisburg-Essen, Essen, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | | | - Michael Knapp
- Institute for Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Lothar Veits
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Christian Gerges
- Department of Internal Medicine, Evangelisches Krankenhaus, Düsseldorf, Germany
| | | | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Yogesh Vashist
- Department of Surgery, Asklepios Harzklinik Goslar, Goslar, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Manner
- Department of Internal Medicine II, Frankfurt Hoechst Hospital, Frankfurt, Germany
| | - Horst Neuhaus
- Department of Internal Medicine, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anne C Böhmer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Arnulf H Hölscher
- Clinic for General, Visceral and Trauma Surgery, Department of Surgery, Contilia Center for Esophageal Diseases. Elisabeth Hospital, Essen, Germany
| | - Mario Anders
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany,Department of Gastroenterology and Interdisciplinary Endoscopy, Vivantes Wenckebach-Klinikum, Berlin, Germany
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, St. John of God Hospital, Regensburg, Germany
| | - Brigitte Schumacher
- Department of Internal Medicine, Evangelisches Krankenhaus, Düsseldorf, Germany,Department of Internal Medicine and Gastroenterology, Elisabeth Hospital, Essen, Germany
| | - Claudia Schmidt
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tania Noder
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dietmar Lorenz
- Department of General and Visceral Surgery, Sana Klinikum, Offenbach, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Andrea May
- Department of Gastroenterology, Oncology and Pneumology, Asklepios Paulinen Klinik, Wiesbaden, Germany
| | - Timo Hess
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Nicole Kreuser
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Jessica Becker
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Ell
- Department of Medicine II, Sana Klinikum, Offenbach, Germany
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian Tomlinson
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - David C Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janusz Jankowski
- Division of Medicine Kings Mill Hospital, Sherwood Hospitals NHS Trust, Nottinghamshire, UK,Comprehensive Clinical Trials Unit, University College London, London, UK,Dean’s Office, College of Medicine and Health Sciences (CMHS), AL Ain, UAE
| | | | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Epidemiology, University of Washington, School of Public Health, Seattle, WA, USA
| | - Margaret M Madeleine
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Epidemiology, University of Washington, School of Public Health, Seattle, WA, USA
| | - Laura J Hardie
- Department of Epidemiology, University of Leeds, Leeds, UK,Correspondence may also be addressed to Laura J. Hardie. Tel: +44(0)113 343 7769;
| | - Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA,To whom correspondence should be addressed. Tel: +1 716-845-4754;
| |
Collapse
|
9
|
Liu CT, Xu YW, Guo H, Hong CQ, Huang XY, Luo YH, Yang SH, Chu LY, Li EM, Peng YH. Serum Insulin-Like Growth Factor Binding Protein 7 as a Potential Biomarker in the Diagnosis and Prognosis of Esophagogastric Junction Adenocarcinoma. Gut Liver 2020; 14:727-734. [PMID: 31822054 PMCID: PMC7667930 DOI: 10.5009/gnl19135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Esophagogastric junction adenocarcinoma (EJA) is a malignant tumor associated with high morbidity and has attracted increasing attention due to a rising incidence and low survival rate. Pathological biopsy is the gold standard for diagnosis, but noninvasive and effective tests are lacking, resulting in diagnoses at advanced stages. This study explored the diagnostic value of insulin-like growth factor binding protein 7 (IGFBP7) in EJA. METHODS A total of 120 EJA patients and 88 normal controls were recruited, and their serum levels of IGFBP7 were measured by enzymelinked immunosorbent assay. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value, and Pearson chi-square analysis was used to evaluate the correlation between IGFBP7 and clinical parameters. Kaplan- Meier survival analysis was carried out to assess the effect of IGFBP7 on overall survival (OS). RESULTS The levels of IGFBP7 were higher in both early- and late-stage EJA patients than in normal controls (p<0.001). The area under the ROC curve for EJA patients was 0.794 (95% confidence interval [CI], 0.733 to 0.854), with a cutoff value of 2.716 ng/mL, a sensitivity of 63.3% (95% CI, 54.0% to 71.8%) and a specificity of 90.9% (95% CI, 82.4% to 95.7%). For the diagnosis of early-stage EJA, the same cutoff value and specificity were obtained, but the sensitivity of IGFBP7 was 54.3% (95% CI, 36.9% to 70.8%). Patients with low IGFBP7 protein expression had lower OS than those with high expression (p=0.034). The multivariate analysis showed that IGFBP7 is an independent prognostic factor for EJA (p=0.011). CONCLUSIONS Serum IGFBP7 acts as a potential diagnostic and prognostic marker for EJA.
Collapse
Affiliation(s)
- Can-Tong Liu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, China
| | - Hong Guo
- Departments of Radiation Oncology, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chao-Qun Hong
- Departments of Oncological Laboratory Research, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xin-Yi Huang
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Yu-Hao Luo
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Shi-Han Yang
- Department of Dermatology and Venereology, Shantou Central Hospital, Shantou, China
| | - Ling-Yu Chu
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - En-Min Li
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Ren Y, Yin S, Lin Y, Xu X. Insulin-like growth factor-binding proteins play a significant role in the molecular response to imatinib in chronic myeloid leukemia patients. Exp Ther Med 2020; 19:1771-1778. [PMID: 32104232 PMCID: PMC7027099 DOI: 10.3892/etm.2019.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
Imatinib (IM) is successfully used in the majority of patients with chronic myeloid leukemia (CML), but some patients develop resistance to drug treatment. Insufficient apoptosis results in uncontrolled cell proliferation, which is closely associated with the occurrence of drug resistance. Therefore, it is crucial to identify new biomarkers related to drug resistance. This aim of the present study was to investigate the profile of apoptosis-related proteins in K562 and K562/G (IM-resistant K562 cells) cells, in order to identify new biomarkers. A human apoptosis antibody array was used to screen 46 proteins in the two cells lines, among which 20 proteins were found to be differentially expressed between K562 and K562/G cells. The major proteins included secreted caspase-8, insulin-like growth factor-binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, caspase-3 and p27. IGFBP-1 IGFBP-2 and IGFBP-3 were selected for the follow-up study. Subsequently, reverse transcription-quantitative PCR analysis and western blotting were used to detect the expression levels of the IGFBPs. The results revealed that the expression levels of IGFBP-2 and IGFBP-3 in K562/G cells were significantly decreased compared with those in K562 cells, whereas the IGFBP-1 level was higher. Moreover, no significant correlation was observed between IGFBP-1 or IGFBP-2 and the level of the BCR-ABL fusion protein, whereas decreasing IGFBP-3 levels were associated with increasing BCR-ABL levels. These results suggested that IGFBP-1, IGFBP-2 and IGFBP-3 could be useful novel biomarkers for IM resistance in CML.
Collapse
Affiliation(s)
- Yingli Ren
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Shihong Yin
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Ya Lin
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xiucai Xu
- Central Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
11
|
Liu Y, Zhang M, He T, Yang W, Wang L, Zhang L, Guo M. Epigenetic silencing of IGFBPL1 promotes esophageal cancer growth by activating PI3K-AKT signaling. Clin Epigenetics 2020; 12:22. [PMID: 32041673 PMCID: PMC7011530 DOI: 10.1186/s13148-020-0815-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background There are seven insulin-like growth factor binding proteins (IGFBPs) that bind insulin-like growth factors (IGFs). IGFBP like protein1 (IGFBPL1) is a new member of this family. The function and mechanism of IGFBPL1 in esophageal cancer remains to be elucidated. Methods Eight esophageal cancer cell lines, 114 cases of esophageal dysplasia, and 501 cases of primary esophageal cancer samples were examined in this study. Methylation-specific polymerase chain reaction (MSP), immunohistochemistry, Western blot, flow cytometry, RNA interference assay, and xenograft mouse models were employed. Results The expression of IGFBPL1was lost and complete methylation was found in KYSE150 and KYSE410 cells. Reduced expression and partial methylation of IGFBPL1 was found in Bic1, KYSE140, KYSE450, KYSE520, and COLO680N cells. High expression and unmethylation was detected in KYSE510 cells. Restoration of IGFBPL1 expression was found in KYSE150 and KYSE410 cells and the expression of IGFBPL1 was increased in Bic1, KYSE140, KYSE450, KYSE520, and COLO680N cells, after 5-AZA-2′-deoxycytidine treatment. IGFBPL1 was methylated in 47.3% (53/114) of esophageal dysplasia and 49.1% (246/501) of human primary esophageal squamous cell carcinoma (ESCC). Methylation of IGFBPL1 was significantly associated with TNM stage (p = 0.012), and tumor size (p = 0.009). IGFBPL1 inhibited esophageal cancer cell clonal formation and proliferation and induced cell apoptosis and G1/S phase arrest. Further study found that IGFBPL1 is involved in PI3K-AKT signaling and IGFBPL1 suppressed human ESCC xenografts growth in mice. Conclusion IGFBPL1 suppresses esophageal cancer cell growth by inhibiting PI3K-AKT signaling in vitro and in vivo. IGFBPL1 is a novel tumor suppressor in human esophageal cancer.
Collapse
Affiliation(s)
- Yingge Liu
- Department of Life Sciences and Technology, Xinxiang Medical University, Jinsui East Road, Xinxiang, 453003, Henan, People's Republic of China.,Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300162, People's Republic of China
| | - Weili Yang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, People's Republic of China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
12
|
Xu YW, Chen H, Hong CQ, Chu LY, Yang SH, Huang LS, Guo H, Chen LY, Liu CT, Huang XY, Lin LH, Chen SL, Wu ZY, Peng YH, Xu LY, Li EM. Serum IGFBP-1 as a potential biomarker for diagnosis of early-stage upper gastrointestinal tumour. EBioMedicine 2020; 51:102566. [PMID: 31901863 PMCID: PMC6956950 DOI: 10.1016/j.ebiom.2019.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early detection would improve upper gastrointestinal cancer prognosis. We aimed to identify serum protein biomarker for the detection of early-stage upper gastrointestinal cancer. METHODS We performed a three-tiered study including 2028 participants from three medical centres. First, we applied two different antibody arrays to screen candidate serum proteins that increased in 20 patients with oesophageal squamous cell carcinoma (ESCC) compared with 20 normal controls. We then evaluated the selected protein by enzyme-linked immunosorbent assay in 1064 participants including 731 upper gastrointestinal cancer patients (287 ESCCs, 237 oesophagogastric junction adenocarcinomas (EJAs), and 207 stomach cancers) and 333 normal controls. The diagnostic value of the selected protein was finally validated in two independent cohorts of ESCC patients and controls (n=472 and 452, respectively). The receiver operating characteristic was used to calculate diagnostic accuracy. FINDINGS Serum insulin-like growth factor binding protein-1 (IGFBP-1) identified in both antibody arrays showed significantly elevated levels in upper gastrointestinal cancers, compared with normal controls. Serum IGFBP-1 provided high diagnostic accuracy of early-stage ESCC, EJA, stomach and cancer (areas under the curve: 0·898, 0·936 and 0·864, respectively). This protein maintained diagnostic performance for early-stage ESCC in independent cohorts 1 and 2 (0·849 and 0·911, respectively). Additionally, serum levels of IGFBP-1 dropped significantly after surgical resection of primary tumours, compared with the corresponding pre-operative ESCC samples (p < 0·05). INTERPRETATION Serum IGFBP-1 represents a promising diagnostic biomarker to detect early-stage upper gastrointestinal cancer.
Collapse
Affiliation(s)
- Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China; Precision Medicine Research Centre, Shantou University Medical College, Shantou, China; Guangdong Oesophageal Cancer Research Institute, Shantou University Medical College, Shantou, China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Ling-Yu Chu
- Precision Medicine Research Centre, Shantou University Medical College, Shantou, China
| | - Shi-Han Yang
- Department of Dermatology and Venereology, Shantou Central Hospital, Shantou, China
| | - Li-Sheng Huang
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Hong Guo
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Liu-Yi Chen
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China; Precision Medicine Research Centre, Shantou University Medical College, Shantou, China
| | - Xin-Yi Huang
- Precision Medicine Research Centre, Shantou University Medical College, Shantou, China
| | - Lie-Hao Lin
- Department of surgery, Shantou Nan'ao People's Hospital, Shantou, China
| | - Shu-Lin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zhi-Yong Wu
- Department of Surgical Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China.
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China; Precision Medicine Research Centre, Shantou University Medical College, Shantou, China; Guangdong Oesophageal Cancer Research Institute, Shantou University Medical College, Shantou, China.
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
13
|
Lee MC, Hsiao TH, Chuang HN, Lee LW, Chi PL, Tsai HM, Mao CL, Hsu CP. Molecular profiling of thymoma with myasthenia gravis: Risk factors of developing myasthenia gravis in thymoma patients. Lung Cancer 2019; 139:157-164. [PMID: 31809976 DOI: 10.1016/j.lungcan.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Thymoma is a rare epithelial tumor arising from the thymus in the anterior mediastinum. Nearly 50% of patients with thymoma develop myasthenia gravis, which is an indication of a poor long-term prognosis. Here, we identified specific and effective molecular markers for predicting in the development of myasthenia gravis patients with thymoma. MATERIAL AND METHODS We investigated molecular profiling based on RNA-sequencing (RNA-seq) for myasthenia gravis development in patients with thymoma. RNA was extracted from 34 patients with thymoma, 16 of whom had myasthenic and 18 of whom did not, and transcriptome profiles were analyzed through next-generation sequencing. RESULTS We discovered 140 differential expressed genes associated with myasthenia gravis in thymoma patients. The four genes, hypoxia-inducible factor 3 alpha (HIF3A), insulin-like growth factor-binding protein 1, pyruvate dehydrogenase kinase, and Krüppel-like factor 15 were differentially expressed in patients with thymoma who has myasthenia gravis and were validated by quantitative polymerase chain reaction. HIF3A expression was significantly higher in patients with myasthenia gravis than in those without. CONCLUSION HIF3A is aberrantly expressed in patient with thymoma who has myasthenia gravis and may be involved in the development of myasthenia gravis in thymoma patient.
Collapse
Affiliation(s)
- Ming-Ching Lee
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, 40705, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; Department of Public Health, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Li-Wen Lee
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, 40705, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Hui-Mei Tsai
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chien-Lin Mao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chung-Ping Hsu
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, 40705, Taiwan; School of Medicine, Tzu Chi University, Hualien 77002, Taiwan; Division of Thorcic Surgery, Department of Surgery, Buddist Tzu Chi Hospital, Hualien, 97002, Taiwan.
| |
Collapse
|
14
|
Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by beta-elemene in human lung cancer. Exp Mol Med 2018; 50:1-14. [PMID: 30209296 PMCID: PMC6135838 DOI: 10.1038/s12276-018-0146-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
β-Elemene, an active component of natural plants, has been shown to exhibit anticancer properties. However, the detailed mechanism underlying these effects has yet to be determined. In this study, we show that β-elemene inhibits the growth of lung cancer cells. Mechanistically, we found that β-elemene decreased the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and miRNA155-5p mRNA but induced the protein expression of human forkhead box class O (FOXO)3a; the latter two were abrogated in cells with overexpressed Stat3. Notably, miRNA155-5p mimics reduced FOXO3a luciferase reporter activity in the 3-UTR region and protein expression, whereas overexpressed FOXO3a countered the reduction of the miRNA155-5p levels by β-elemene. Moreover, β-elemene increased the mRNA and protein expression levels as well as promoter activity of insulin-like growth factor-binding protein 1 (IGFBP1); this finding was not observed in cells with a silenced FOXO3a gene and miRNA155-5p mimics. Finally, silencing of IGFBP1 blocked β-elemene-inhibited cell growth. Similar findings were observed in vivo. In summary, our results indicate that β-elemene increases IGFBP1 gene expression via inactivation of Stat3 followed by a reciprocal interaction between miRNA155-5p and FOXO3a. This effect leads to inhibition of human lung cancer cell growth. These findings reveal a novel molecular mechanism underlying the inhibitory effects of β-elemene on lung cancer cells. A compound found in one Chinese medicinal herb inhibits the growth of lung cancer cells by indirectly activating a protein with anti-proliferative properties. Hann and colleagues from the Guangzhou University of Chinese Medicine, China, uncovered the molecular pathways by which β-elemene, a natural compound isolated from the Curcuma wenyujin plant, mediates the anti-cancer effects. They showed that β-elemene inactivates the two important regulatory molecules, one protein and another small RNA, while also inducing the expression of one protein that promotes in killing cancer cells. These changes lead to elevated levels of the protein that prevents cell invasion and spread. Collectively, this altered signaling inside the lung cancer cell lead to reduced growth, in both cell-based culture and mouse model. The findings help explain why β-elemene has potential as a therapeutic agent in lung cancer.
Collapse
|
15
|
Xiong D, Pan J, Yin Y, Jiang H, Szabo E, Lubet RA, Wang Y, You M. Novel mutational landscapes and expression signatures of lung squamous cell carcinoma. Oncotarget 2017; 9:7424-7441. [PMID: 29484121 PMCID: PMC5800913 DOI: 10.18632/oncotarget.23716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a major subtype of Non-Small Cell Lung Cancer. To increase our understanding of the LUSC pathobiology, we performed exome sequencing and RNA-seq in 16 murine carcinogen-induced LUSC tumors and 8 normal murine lung tissue samples. Additionally, we conducted single-cell RNA-seq on two independent tumors from the same murine model. We identified a list of 59 cancer genes recurrently mutated in the mice LUSC tumors, 47 (80%) of which were also mutated in human LUSCs. At the single cell level, we detected unique clonal mutation patterns for each of the two LUSC tumors, being initiated from clones carrying the mutant Igfbp7 and Trp53 genes, respectively. We also identified an expression signature serving as an effective classifier for LUSC tumors and a strong predictor of survival outcomes of lung cancer patients. Lastly, we found that some of the mutant LUSC genes were associated with the significantly altered tumoral expression of inhibitory immune checkpoint genes such as PD-L1, VISTA, TIM3 and LAG3 in human LUSCs. The novel findings of clonal evolution, mutational landscapes and expression signatures of LUSC suggested new targets for the overall LUSC therapy and the immunotherapy of LUSC.
Collapse
Affiliation(s)
- Donghai Xiong
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jing Pan
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yuxin Yin
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hui Jiang
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eva Szabo
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Yian Wang
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ming You
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Yuan J, Yin Z, Tao K, Wang G, Gao J. Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy. Oncol Lett 2017; 15:41-47. [PMID: 29285186 DOI: 10.3892/ol.2017.7276] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a primary cause of chemotherapeutic failure; however, how this resistance develops is complex. A comprehensive understanding of chemotherapeutic resistance mechanisms may aid in identifying more effective drugs and improve the survival rates of patients with cancer. Insulin-like growth factor 1 receptor (IGF1R), a member of the insulin receptor family, has been extensively assessed for biological activity, and its putative contribution to tumor cell development and progression. Furthermore, researchers have attended to drugs that target IGF1R since IGF1R functions as a membrane receptor. However, how IGF1R participates in chemotherapeutic resistance remains unclear. Therefore, the present study described the IGF1R gene and its associated signaling pathways, and offered details of IGF1R-induced tumor chemoresistance associated with promoting cell proliferation, inhibition of apoptosis, regulation of ATP-binding cassette transporter proteins and interactions with the extracellular matrix. The present study offered additional explanations for tumor chemotherapy resistance and provided a theoretical basis of IGF1R and its downstream pathways for future possible chemotherapy treatment options.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhijie Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guobing Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
17
|
Kim E, Na S, An B, Yang SR, Kim WJ, Ha KS, Han ET, Park WS, Lee CM, Lee JY, Lee SJ, Hong SH. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:161-168. [PMID: 28280409 PMCID: PMC5343049 DOI: 10.4196/kjpp.2017.21.2.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.
Collapse
Affiliation(s)
- Eunbi Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sunghun Na
- Department of Obstetrics & Gynecology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Borim An
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island 02912, US
| | - Ji Yoon Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Sanji University, Wonju 26339, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
18
|
Song G, Liu K, Zhu X, Yang X, Shen Y, Wang W, Shi G, Li Q, Duan Y, Zhao Y, Feng G. The low IGFBP-3 level is associated with esophageal cancer patients: a meta-analysis. World J Surg Oncol 2016; 14:307. [PMID: 27978831 PMCID: PMC5159950 DOI: 10.1186/s12957-016-1055-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022] Open
Abstract
Background Esophageal cancer was a vital cause of cancer-related mortality worldwide, and the insulin-like growth factor-binding proteins (IGFBPs) has been proved to be an important factor of multiple types of tumors. There is a controversy that whether the IGFBP-3 level is associated with the clinical pathological characteristics and overall survival of esophageal cancer patients. Herein, we aimed to comprehensively assess the association between the low IGFBP-3 level and the risk, overall survival and clinical pathological characteristics of esophageal cancer. Method We conducted a meta-analysis using seven eligible studies. The overall odds ratios (OR)/relative risk (RR) and their corresponding 95% confidence interval (CI) were calculated for each parameter. Results For the risk of esophageal cancer, the OR was 2.342 (p = 0.000), indicating that individuals with lower IGFBP-3 level were more likely to suffer from esophageal cancer, compared to those with relatively high IGFBP-3 level. With respect to the 3-year survival rate, the RR was 2.163 (p = 0.027), which demonstrated that esophageal cancer patients with low IGFBP-3 level had significantly lower 3-year survival rate; in terms of clinical pathological characteristics, significantly lower IGFBP-3 level was found for patients in all categories; for survival status, patients in low IGFBP-3 level are more likely to be in the dead survival status (OR = 4.480, p = 0.000). Conclusion Our meta-analysis suggests that for esophageal cancer, the low IGFBP-3 level is associated with high cancer risk, poor prognosis, and unfavorable tumor stage and metastasis.
Collapse
Affiliation(s)
- Guiqin Song
- Department of Biology, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Xiaoyan Zhu
- Department of Parasitology, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Xiaolin Yang
- Department of Biology, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Yuewu Shen
- Department of Biology, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Wan Wang
- Department of Biology, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Guidong Shi
- Department of Chest Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Qing Li
- The clinic medicine of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Yi Duan
- The clinic medicine of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Yunxia Zhao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China. .,Biotherapy Center, Nanchong Central Hospital, Nanchong, 637000, Sichuan Province, People's Republic of China.
| |
Collapse
|
19
|
Abdel-Razik A, Eldars W, Elhelaly R, Elzehery R. C-reactive protein and insulin-like growth factor-1 in differential diagnosis of ascites. J Gastroenterol Hepatol 2016; 31:1868-1873. [PMID: 27010362 DOI: 10.1111/jgh.13386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Insulin-like growth factor-1 (IGF-1) and C-reactive protein (CRP) are produced mainly by the liver; the output of these markers in response to inflammatory processes may be affected in patients with hepatic dysfunction. This may explain the differences in IGF-1 and CRP values in patients with non-portal and portal hypertension ascites. We aimed to evaluate serum and ascitic fluid IGF-1 and CRP as diagnostic markers in the differential diagnosis of benign and malignant ascites. METHODS In this prospective study, 398 consecutive patients with ascites were included. Serum and ascitic fluid levels of IGF-1 and CRP were measured using an enzyme-linked immunosorbent assay. RESULTS Patients were divided into group 1, due to benign ascites (n = 324), and group 2, due to malignant ascites (n = 74). Serum and ascitic IGF-1 were significantly increased in malignant ascites than benign ascites group [305 ± 65.7 ng/mL vs 95 ± 53.8 ng/mL; P < 0.001 and 288 ± 54.7 ng/mL vs 83.2 ± 36.7 ng/mL; P < 0.001], respectively. Serum and ascitic CRP were significantly higher in malignant ascites than benign ascites patients [12.8 ± 6.3 mg/mL vs 6.1 ± 4.9 mg/mL; P < 0.001 and 5.1 ± 2.2 mg/mL vs 1.6 ± 1.3 mg/mL; P < 0.001], respectively. At a cutoff value of 309.4 ng/mL and 7.8 mg/mL, serum IGF-1 and CRP had (95.1%, 81%) sensitivity and (88.6%, 75.5%) specificity for detecting malignant ascites [area under the curve: 0.932, 0.845], respectively. At a cutoff value of 291.6 ng/mL and 2.6 mg/mL, ascitic IGF-1 and CRP had (94.6%, 84%) sensitivity and (83.2%, 80.3%) specificity for detecting malignant ascites (area under the curve: 0.911, 0.893) correspondingly. CONCLUSION Elevated serum and ascitic fluid IGF-1 and CRP levels were associated with malignant ascites.
Collapse
Affiliation(s)
- Ahmed Abdel-Razik
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Waleed Eldars
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rania Elhelaly
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Elzehery
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Meneses-Echávez JF, Jiménez EG, Río-Valle JS, Correa-Bautista JE, Izquierdo M, Ramírez-Vélez R. The insulin-like growth factor system is modulated by exercise in breast cancer survivors: a systematic review and meta-analysis. BMC Cancer 2016; 16:682. [PMID: 27562357 PMCID: PMC5000410 DOI: 10.1186/s12885-016-2733-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/29/2016] [Indexed: 12/30/2022] Open
Abstract
Background Insulin-like growth factors (IGF´s) play a crucial role in controlling cancer cell proliferation, differentiation and apoptosis. Exercise has been postulated as an effective intervention in improving cancer-related outcomes and survival, although its effects on IGF´s are not well understood. This meta-analysis aimed to determine the effects of exercise in modulating IGF´s system in breast cancer survivors. Methods Databases of PuMed, EMBASE, Cochrane Central Register of Controlled Trials, EMBASE, ClinicalTrials.gov, SPORTDiscus, LILACS and Scopus were systematically searched up to November 2014. Effect estimates were calculated through a random-effects model of meta-analysis according to the DerSimonian and Laird method. Heterogeneity was evaluated with the I2 test. Risk of bias and methodological quality were evaluated using the PEDro score. Results Five randomized controlled trials (n = 235) were included. Most women were post-menopausal. High-quality and low risk of bias were found (mean PEDro score = 6.2 ± 1). Exercise resulted in significant improvements on IGF-I, IGF-II, IGFBP-I, IGFBP-3, Insulin and Insulin resistance (P < 0.05). Non-significant differences were found for Glucose. Aerobic exercise improved IGF-I, IGFBP-3 and Insulin. No evidence of publication bias was detected by Egger´s test (p = 0.12). Conclusions Exercise improved IGF´s in breast cancer survivors. These findings provide novel insight regarding the molecular effects of exercise on tumoral microenvironment, apoptosis and survival in breast cancer survivors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2733-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Francisco Meneses-Echávez
- Centro de Estudios en Medición de la Actividad Física (CEMA), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, DC, Colombia
| | - Emilio González Jiménez
- Departamento de Enfermería. Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | | | - Jorge Enrique Correa-Bautista
- Centro de Estudios en Medición de la Actividad Física (CEMA), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, DC, Colombia
| | - Mikel Izquierdo
- Department of Health Sciences Public, University of Navarra, Pamplona, Spain
| | - Robinson Ramírez-Vélez
- Centro de Estudios en Medición de la Actividad Física (CEMA), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, DC, Colombia.
| |
Collapse
|
21
|
Yang SA. Association between exonic polymorphism (rs629849, Gly1619Arg) of IGF2R gene and obesity in Korean population. J Exerc Rehabil 2015; 11:282-6. [PMID: 26535220 PMCID: PMC4625658 DOI: 10.12965/jer.150239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023] Open
Abstract
The aim of this study is to investigate the relationship between single nucleotide polymorphisms (SNPs) and susceptibility to obesity. A previous study suggested that insulin-like growth factors (IGFs) may affect obesity and that IGFs regulate cellular signals by receptors that include the insulin-like growth factor 1 receptor (IGF1R) and the insulin-like growth factor 2 receptor (IGF2R). In this research, the rs3743262 and rs2229765 SNPs of IGF1R gene and rs629849 and rs1805075 SNPs of IG-F2R gene were genotyped in 120 overweight and obese patients with a BMI≥23 kg/m2 (Body Mass Index) and 123 healthy controls with a BMI of 18.5–23.0 kg/m2. Genotyping of each SNP was performed by direct sequencing. Among tested SNPs in IGF1R and IGF2R genes, rs629849 SNP of IGF2R gene showed significant association with obesity (OR=1.86, 95% CI=1.02–3.40, P=0.044 in codominant1 model; OR=1.99, 95% CI=1.10–3.57, P=0.020 in dominant model; OR=1.93, 95% CI=1.13–3.31, P=0.013 in log-additive model). And allele distribution between the control group and overweight/obese group also showed significant difference (OR=1.93, 95% CI=1.14–3.28, P=0.015). In conclusion, these results indicate that rs629849 SNP of IGF2R might be contributed to development of obesity in the Korean population.
Collapse
Affiliation(s)
- Seung-Ae Yang
- College of Nursing, Sungshin Women's University, Seoul, Korea
| |
Collapse
|