1
|
Wang Y, Kang X, Kang X, Yang F. S100A6: molecular function and biomarker role. Biomark Res 2023; 11:78. [PMID: 37670392 PMCID: PMC10481514 DOI: 10.1186/s40364-023-00515-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
S100A6 (also called calcyclin) is a Ca2+-binding protein that belongs to the S100 protein family. S100A6 has many functions related to the cytoskeleton, cell stress, proliferation, and differentiation. S100A6 also has many interacting proteins that are distributed in the cytoplasm, nucleus, cell membrane, and outside the cell. Almost all these proteins interact with S100A6 in a Ca2+-dependent manner, and some also have specific motifs responsible for binding to S100A6. The expression of S100A6 is regulated by several transcription factors (such as c-Myc, P53, NF-κB, USF, Nrf2, etc.). The expression level depends on the specific cell type and the transcription factors activated in specific physical and chemical environments, and is also related to histone acetylation, DNA methylation, and other epigenetic modifications. The differential expression of S100A6 in various diseases, and at different stages of those diseases, makes it a good biomarker for differential diagnosis and prognosis evaluation, as well as a potential therapeutic target. In this review, we mainly focus on the S100A6 ligand and its transcriptional regulation, molecular function (cytoskeleton, cell stress, cell differentiation), and role as a biomarker in human disease and stem cells.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Kang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China.
| | - Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
- The Orthopedics Department of the Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730000, PR China.
| |
Collapse
|
2
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
3
|
Yang F, Ma J, Zhu D, Wang Z, Li Y, He X, Zhang G, Kang X. The Role of S100A6 in Human Diseases: Molecular Mechanisms and Therapeutic Potential. Biomolecules 2023; 13:1139. [PMID: 37509175 PMCID: PMC10377078 DOI: 10.3390/biom13071139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
S100A6, also known as calcyclin, is a low-molecular-weight Ca2+-binding protein from the S100 family that contains two EF-hands. S100A6 is expressed in a variety of mammalian cells and tissues. It is also expressed in lung, colorectal, pancreatic, and liver cancers, as well as other cancers such as melanoma. S100A6 has many molecular functions related to cell proliferation, the cell cycle, cell differentiation, and the cytoskeleton. It is not only involved in tumor invasion, proliferation, and migration, but also the pathogenesis of other non-neoplastic diseases. In this review, we focus on the molecular mechanisms and potential therapeutic targets of S100A6 in tumors, nervous system diseases, leukemia, endometriosis, cardiovascular disease, osteoarthritis, and other related diseases.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jinglin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Daxue Zhu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanhu Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
4
|
S100A6 Protein-Expression and Function in Norm and Pathology. Int J Mol Sci 2023; 24:ijms24021341. [PMID: 36674873 PMCID: PMC9866648 DOI: 10.3390/ijms24021341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
S100A6, also known as calcyclin, is a calcium-binding protein belonging to the S100 protein family. It was first identified and purified more than 30 years ago. Initial structural studies, focused mostly on the mode and affinity of Ca2+ binding and resolution of the resultant conformational changes, were soon complemented by research on its expression, localization and identification of binding partners. With time, the use of biophysical methods helped to resolve the structure and versatility of S100A6 complexes with some of its ligands. Meanwhile, it became clear that S100A6 expression was altered in various pathological states and correlated with the stage/progression of many diseases, including cancers, indicative of its important, and possibly causative, role in some of these diseases. This, in turn, prompted researchers to look for the mechanism of S100A6 action and to identify the intermediary signaling pathways and effectors. After all these years, our knowledge on various aspects of S100A6 biology is robust but still incomplete. The list of S100A6 ligands is growing all the time, as is our understanding of the physiological importance of these interactions. The present review summarizes available data concerning S100A6 expression/localization, interaction with intracellular and extracellular targets, involvement in Ca2+-dependent cellular processes and association with various pathologies.
Collapse
|
5
|
Freischel AR, Teer JK, Luddy K, Cunningham J, Artzy-Randrup Y, Epstein T, Tsai KY, Berglund A, Cleveland JL, Gillies RJ, Brown JS, Gatenby RA. Evolutionary Analysis of TCGA Data Using Over- and Under- Mutated Genes Identify Key Molecular Pathways and Cellular Functions in Lung Cancer Subtypes. Cancers (Basel) 2022; 15:18. [PMID: 36612014 PMCID: PMC9817988 DOI: 10.3390/cancers15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
We identify critical conserved and mutated genes through a theoretical model linking a gene’s fitness contribution to its observed mutational frequency in a clinical cohort. “Passenger” gene mutations do not alter fitness and have mutational frequencies determined by gene size and the mutation rate. Driver mutations, which increase fitness (and proliferation), are observed more frequently than expected. Non-synonymous mutations in essential genes reduce fitness and are eliminated by natural selection resulting in lower prevalence than expected. We apply this “evolutionary triage” principle to TCGA data from EGFR-mutant, KRAS-mutant, and NEK (non-EGFR/KRAS) lung adenocarcinomas. We find frequent overlap of evolutionarily selected non-synonymous gene mutations among the subtypes suggesting enrichment for adaptations to common local tissue selection forces. Overlap of conserved genes in the LUAD subtypes is rare suggesting negative evolutionary selection is strongly dependent on initiating mutational events during carcinogenesis. Highly expressed genes are more likely to be conserved and significant changes in expression (>20% increased/decreased) are common in genes with evolutionarily selected mutations but not in conserved genes. EGFR-mut cancers have fewer average mutations (89) than KRAS-mut (228) and NEK (313). Subtype-specific variation in conserved and mutated genes identify critical molecular components in cell signaling, extracellular matrix remodeling, and membrane transporters. These findings demonstrate subtype-specific patterns of co-adaptations between the defining driver mutation and somatically conserved genes as well as novel insights into epigenetic versus genetic contributions to cancer evolution.
Collapse
Affiliation(s)
- Audrey R. Freischel
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jamie K. Teer
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kimberly Luddy
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jessica Cunningham
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Yael Artzy-Randrup
- Departments of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Tamir Epstein
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kenneth Y. Tsai
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Departments of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anders Berglund
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - John L. Cleveland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Robert J. Gillies
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Departments of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Diagnostic Imaging & Interventional Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Joel S. Brown
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Robert A. Gatenby
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Diagnostic Imaging & Interventional Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Erythropoietin Interacts with Specific S100 Proteins. Biomolecules 2022; 12:biom12010120. [PMID: 35053268 PMCID: PMC8773746 DOI: 10.3390/biom12010120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (EPO) is a clinically significant four-helical cytokine, exhibiting erythropoietic, cytoprotective, immunomodulatory, and cancer-promoting activities. Despite vast knowledge on its signaling pathways and physiological effects, extracellular factors regulating EPO activity remain underexplored. Here we show by surface plasmon resonance spectroscopy, that among eighteen members of Ca2+-binding proteins of the S100 protein family studied, only S100A2, S100A6 and S100P proteins specifically recognize EPO with equilibrium dissociation constants ranging from 81 nM to 0.5 µM. The interactions occur exclusively under calcium excess. Bioinformatics analysis showed that the EPO-S100 interactions could be relevant to progression of neoplastic diseases, including cancer, and other diseases. The detailed knowledge of distinct physiological effects of the EPO-S100 interactions could favor development of more efficient clinical implications of EPO. Summing up our data with previous findings, we conclude that S100 proteins are potentially able to directly affect functional activities of specific members of all families of four-helical cytokines, and cytokines of other structural superfamilies.
Collapse
|
7
|
Chen TY, Liu CH, Chen TH, Chen MR, Liu SW, Lin P, Lin KMC. Conditioned Media of Adipose-Derived Stem Cells Suppresses Sidestream Cigarette Smoke Extract Induced Cell Death and Epithelial-Mesenchymal Transition in Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms222112069. [PMID: 34769496 PMCID: PMC8584490 DOI: 10.3390/ijms222112069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
The role of the epithelial-mesenchymal transition (EMT) in lung epithelial cells is increasingly being recognized as a key stage in the development of COPD, fibrosis, and lung cancers, which are all highly associated with cigarette smoking and with exposure to second-hand smoke. Using the exposure of human lung cancer epithelial A549 cells and non-cancerous Beas-2B cells to sidestream cigarette smoke extract (CSE) as a model, we studied the protective effects of adipose-derived stem cell-conditioned medium (ADSC-CM) against CSE-induced cell death and EMT. CSE dose-dependently induced cell death, decreased epithelial markers, and increased the expression of mesenchymal markers. Upstream regulator analysis of differentially expressed genes after CSE exposure revealed similar pathways as those observed in typical EMT induced by TGF-β1. CSE-induced cell death was clearly attenuated by ADSC-CM but not by other control media, such as a pass-through fraction of ADSC-CM or A549-CM. ADSC-CM effectively inhibited CSE-induced EMT and was able to reverse the gradual loss of epithelial marker expression associated with TGF-β1 treatment. CSE or TGF-β1 enhanced the speed of A549 migration by 2- to 3-fold, and ADSC-CM was effective in blocking the cell migration induced by either agent. Future work will build on the results of this in vitro study by defining the molecular mechanisms through which ADSC-CM protects lung epithelial cells from EMT induced by toxicants in second-hand smoke.
Collapse
Affiliation(s)
- Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
| | - Chia-Hao Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
| | - Tsung-Hsien Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600566, Taiwan
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
- Institute of Population Health, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
- Correspondence: ; Tel.: +886-37206166 (ext. 37118)
| |
Collapse
|
8
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
9
|
Wang T, Han S, Du G. S100A6 represses Calu-6 lung cancer cells growth via inhibiting cell proliferation, migration, invasion and enhancing apoptosis. Cell Biochem Funct 2021; 39:771-779. [PMID: 34008212 PMCID: PMC8453982 DOI: 10.1002/cbf.3639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022]
Abstract
S100 calcium binding protein A6 (S100A6) has been reported to involve in many kinds of cancers through regulating intracellular calcium homeostasis. Previous studies found that S100A6 increased in lung cancer patients' plasma and pleural effusion. This study focused on its function in Calu-6 lung cancer cells. S100A6 gene was transferred into Calu-6 lung cancer cell line by lentivirus vector, the empty vector transfected cells and the blank cells were set as control groups. MTT was evaluating cell proliferation. The transwell assay was reflecting cell migration and cell invasion. The flow cytometric analysis was detecting cell apoptosis and cell cycle of three groups (Calu-6, Calu-6/neo, Calu-6/S100A6). Nude mouse tumorigenicity was then applied to evaluate S100A6's effect on cellular tumorigenicity. Compared with control groups, Calu-6/S100A6 cells showed a weakening trend in the cell behaviours of proliferation, migration and invasiveness, while had an enhancement of cell apoptosis, with all P < .05. The cell cycle of Calu-6/S100A6 cells had a reduction of S phase and an increase of G1 phase (P < .05). In animal study, after 5 weeks of cell injection, the tumour bulk of Calu-6/S100A6 group was smaller than controls, with P < .05. Our results demonstrate S100A6 inhibits the growth of Calu-6 lung cancer cells, as well as impairs Calu-6's ability in tumorigenesis. At cellular level, S100A6 is supposed to act as a tumour suppressor gene in lung cancer.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory Medicine, Xi'an People's Hospital (Xi'an No.4 Hospital), Xi'an, China
| | - Suoli Han
- Department of Oncology, Zibo Mining Coal Hospital, Zibo, China
| | - Ge Du
- Department of Rehabilitation Center for Elderly, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
11
|
Moravkova P, Kohoutova D, Vavrova J, Bures J. Serum S100A6, S100A8, S100A9 and S100A11 proteins in colorectal neoplasia: results of a single centre prospective study. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 80:173-178. [PMID: 31856598 DOI: 10.1080/00365513.2019.1704050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
S100 proteins are involved in biological events related to colorectal carcinogenesis. Aim of this prospective study was to assess serum concentration of S100A6, A8, A9 and A11 proteins in patients with colorectal neoplasia. Eighty-four subjects were enrolled: 20 controls (average risk population with normal findings on colonoscopy; 7 men, 13 women, age 23-74, mean 55 ± 14), 20 patients with non-advanced colorectal adenoma (non-AA, 10 men, 10 women, age 41-82, mean 62 ± 11), 22 with advanced colorectal adenoma (AA, 15 men, 7 women, age 49-80, mean 64 ± 8) and 22 with colorectal cancer (CRC, 12 men, 10 women, age 49-86, mean 69 ± 10). Peripheral venous blood was obtained. Serum S100 proteins were investigated by enzyme immunoassay technique. Serum S100A6 was significantly lower in CRC (mean 8530 ± 4743 ng/L), p = .035 compared to controls (mean 11308 ± 2968 ng/L). Serum S100A8 was significantly higher in AA (median 11955 ng/L, IQR 2681-34756 ng/L), p = .009 and in CRC (median 27532 ng/L, IQR 6794-35092 ng/L), p < .001 compared to controls (median 2513 ng/L, IQR 2111-4881 ng/L). Serum S100A9 concentrations did not differ between any tested group and controls, p > .05. Serum concentration of S100A11 was significantly lower in non-AA (mean 3.5 ± 2.4 μg/L), p = .004 and in CRC (mean 3.4 ± 2.4 μg/L), p = .002 compared to controls (mean 5.9 ± 2.5 μg/L). Sensitivity and specificity for S100A8 protein in patients with CRC were 94% and 73%; positive predictive value 68% and negative predictive value 95%. Patients with colorectal neoplasia have significantly lower serum S100A6 and S100A11 levels, significantly higher S100A8 and unaltered serum S100A9 levels.
Collapse
Affiliation(s)
- Paula Moravkova
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic
| | - Darina Kohoutova
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic.,The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Jaroslava Vavrova
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic
| | - Jan Bures
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
13
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Güzel C, van den Berg CB, Duvekot JJ, Stingl C, van den Bosch TPP, van der Weiden M, Steegers EAP, Steegers-Theunissen RPM, Luider TM. Quantification of Calcyclin and Heat Shock Protein 90 in Sera from Women with and without Preeclampsia by Mass Spectrometry. Proteomics Clin Appl 2019; 13:e1800181. [PMID: 30417587 PMCID: PMC6588016 DOI: 10.1002/prca.201800181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/11/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE The objective of present study is to determine serum levels and placental distribution of two interacting proteins calcyclin and heat shock protein 90 in preeclampsia. EXPERIMENTAL DESIGN Maternal serum levels of calcyclin and heat shock protein 90 are compared throughout pregnancy from the first trimester till term among women with preeclampsia (n = 43) and age-matched normotensive pregnant controls (n = 46). A serum-based 2D LC-MS assay using Parallel Reaction Monitoring is applied to quantify both calcyclin and heat shock protein 90. RESULTS Serum levels of calcyclin are significantly lower in patients with preeclampsia in the second trimester of pregnancy as compared to controls (p < 0.05). Serum levels of heat shock protein 90 are significantly higher in patients with preeclampsia in the third trimester as compared to controls (p < 0.001). CONCLUSION AND CLINICAL RELEVANCE Both interacting proteins calcyclin and heat shock protein 90 are notably changed in preeclamptic patients compared to controls. Calcyclin is already decreased before the onset of preeclampsia in the second trimester and HSP90 is strongly increased in the third trimester. This suggests that these proteins may play a role in the pathogenesis of preeclampsia and ought to be investigated in large cohort studies as molecular biomarkers.
Collapse
Affiliation(s)
- Coşkun Güzel
- Laboratory of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Caroline B van den Berg
- Departments of Obstetrics and Gynecology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Johannes J Duvekot
- Departments of Obstetrics and Gynecology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Christoph Stingl
- Laboratory of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marcel van der Weiden
- Department of Pathology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Departments of Obstetrics and Gynecology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Regine P M Steegers-Theunissen
- Departments of Obstetrics and Gynecology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
15
|
ERβ modulation and non-modulation of ERα by administration of geniposide and panax notoginseng saponins in SH-SY5Y cells. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Xia P, He H, Kristine MS, Guan W, Gao J, Wang Z, Hu J, Han L, Li J, Han W, Yu Y. Therapeutic effects of recombinant human S100A6 and soluble receptor for advanced glycation end products(sRAGE) on CCl 4-induced liver fibrosis in mice. Eur J Pharmacol 2018; 833:86-93. [PMID: 29800549 DOI: 10.1016/j.ejphar.2018.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023]
Abstract
Hepatic fibrosis is a pathological process in which extracellular matrix excessively aggregates in an injured liver. Research on hepatic fibrosis is expanding, however, much information in this process is still unclear. Here, we examined the gene expression changes within the process of liver fibrosis, providing the first evidence that secreted S100A6 is a critical contributor. We discovered that expression of the S100 family is highly correlated with CCl4-induced liver fibrosis and post self-recovery in mice. Recombinant human S100A6 (rhS100A6) introduced to CCl4-induced mice was found to enhance liver fibrosis through the promotion of activated hepatic stellate cell (HSC) proliferation. More importantly, we showed that rhS100A6 can induce cell cycle transition from S to G2 stage and significantly elevate the level of ERK phosphorylation in the MARK pathway. In contrast to rhS100A6, recombinant human and soluble receptor for advanced glycation end products (sRAGE), a natural antagonist of the S100/RAGE pathway, was found to have a preventative effect on liver fibrosis in CCl4-induced mice. In conclusion, our study supports that S100A6 could be a novel therapeutic in liver fibrosis and its receptor antagonist, sRAGE, proofed to be effective for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Peng Xia
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PBS 323, 205 E. Spokane Falls Blvd., P.O. Box 1495, Spokane, WA 99210-1495, USA
| | - Honglin He
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Modrak Samantha Kristine
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PBS 323, 205 E. Spokane Falls Blvd., P.O. Box 1495, Spokane, WA 99210-1495, USA
| | - Wen Guan
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jin Gao
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhen Wang
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jianjun Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Lei Han
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jinjing Li
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Han
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
17
|
Pan SC, Li CY, Kuo CY, Kuo YZ, Fang WY, Huang YH, Hsieh TC, Kao HY, Kuo Y, Kang YR, Tsai WC, Tsai ST, Wu LW. The p53-S100A2 Positive Feedback Loop Negatively Regulates Epithelialization in Cutaneous Wound Healing. Sci Rep 2018; 8:5458. [PMID: 29615682 PMCID: PMC5882638 DOI: 10.1038/s41598-018-23697-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
The S100A2 protein is an important regulator of keratinocyte differentiation, but its role in wound healing remains unknown. We establish epithelial-specific S100A2 transgenic (TG) mice and study its role in wound repair using punch biopsy wounding assays. In line with the observed increase in proliferation and migration of S100A2-depleted human keratinocytes, mice expressing human S100A2 exhibit delayed cutaneous wound repair. This was accompanied by the reduction of re-epithelialization as well as a slow, attenuated response of Mcp1, Il6, Il1β, Cox2, and Tnf mRNA expression in the early phase. We also observed delayed Vegfa mRNA induction, a delayed enhancement of the Tgfβ1-mediated alpha smooth muscle actin (α-Sma) axis and a differential expression of collagen type 1 and 3. The stress-activated p53 tumor suppressor protein plays an important role in cutaneous wound healing and is an S100A2 inducer. Notably, S100A2 complexes with p53, potentiates p53-mediated transcription and increases p53 expression both transcriptionally and posttranscriptionally. Consistent with a role of p53 in repressing NF-κB-mediated transcriptional activation, S100A2 enhanced p53-mediated promoter suppression of Cox2, an early inducible NF-κB target gene upon wound injury. Our study thus supports a model in which the p53-S100A2 positive feedback loop regulates wound repair process.
Collapse
Affiliation(s)
- Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Che-Yu Li
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chia-Yi Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yu-Hsuan Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzu-Chin Hsieh
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuan Kuo
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ya-Rong Kang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wan-Chi Tsai
- Department of Laboratory Science and Technology, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan, Republic of China.
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Laboratory Science and Technology, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
18
|
A review of S100 protein family in lung cancer. Clin Chim Acta 2017; 476:54-59. [PMID: 29146477 DOI: 10.1016/j.cca.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 02/08/2023]
Abstract
S100 protein family, representing 25 relatively small calcium binding proteins, has been reported to be involved in multiple stages of tumorigenesis and progression. These proteins are considered having potential value to be adopted as novel biomarkers in the detection and accurate prediction of many kinds of tumors, including lung cancer. As the one having the highest morbidity and mortality among all cancers, lung carcinoma is still occult for detection, especially at early stage. S100 proteins take participation in the lung neoplasia through playing intracellular and/or extracellular functions, therefore getting involved in a variety of biological processes such as differentiation, proliferation, and migration. A few members have also been testified to modulate TGF-β/Smad-3 mediated transcriptional activity of target genes involved in tumor promotion. In addition to that, a number of proteins in this family have already been reported to experience an abnormal trend in lung cancer at cell, serum and tissue levels. Thus, S100 proteins may serve as effective biomarkers for suspected or already diagnosed lung cancer patients. In future, S100 protein family might be applied as therapeutic targets in clinical treatment of lung cancer. In this review, we firstly summed up the biological and clinical evidence connecting S100 proteins and lung cancer, which has not been summarized before.
Collapse
|
19
|
He X, Xu X, Khan AQ, Ling W. High Expression of S100A6 Predicts Unfavorable Prognosis of Lung Squamous Cell Cancer. Med Sci Monit 2017; 23:5011-5017. [PMID: 29053662 PMCID: PMC5661742 DOI: 10.12659/msm.904279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background S100 family of proteins is mainly involved in regulation of intracellular calcium homeostasis. Aberrant expression of S100 family members has been reported in many types of cancers. However, as a member of S100 family, the prognostic value of S100A6 for lung squamous cell carcinoma (SCC) has not been well-studied. Material/Methods Using immunohistochemistry, we investigated the expression of S100A6 in 177 patients with SCC and further divided the cohort into a high S100A6 expression group and a low S100A6 expression group. The chi-square test was applied to analyze the correlation between S100A6 expression and clinicopathological factors. Univariate analysis using the Kaplan-Meier method was performed to compare the difference in survival rates between the high S100A6 expression group and the low S100A6 expression group; multivariate analysis with Cox regression model was used to identify independent prognostic risk factors. Results In our experiment, we demonstrated that the expression of S100A6 was significantly associated with patient age and tumor differentiation. High-expression of S100A6 was shown to be substantially related to the unfavorable prognosis of SCC. Moreover, our results confirmed that S100A6 was an independent risk factor for SCC prognosis, and could predict unfavorable prognosis. Conclusions High-expression of S100A6 was identified as an independent unfavorable prognostic factor for SCC, suggesting that targeting S100A6 may result in the development of potential targeted drug for SCC.
Collapse
Affiliation(s)
- Xigang He
- Department of Respiratory Medicine, Rizhao Lanshan People's Hospital, Rizhao, Shandong, China (mainland)
| | - Xueliang Xu
- Department of Respiratory Medicine, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| | - Abdul Qadir Khan
- Department of General Surgery, Qilu Hospital affiliated with Shandong University, Jinan, Shandong, China (mainland)
| | - Wei Ling
- Department of Respiratory Medicine, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| |
Collapse
|
20
|
Leśniak W, Wilanowski T, Filipek A. S100A6 - focus on recent developments. Biol Chem 2017; 398:1087-1094. [PMID: 28343163 DOI: 10.1515/hsz-2017-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/21/2017] [Indexed: 01/08/2023]
Abstract
The Ca2+-binding protein, S100A6, belongs to the S100 family. Binding of Ca2+ induces a conformational change, which causes an increase in the overall S100A6 hydrophobicity and allows it to interact with many targets. S100A6 is expressed in different normal tissues and in many tumors. Up to now it has been shown that S100A6 is involved in cell proliferation, cytoskeletal dynamics and tumorigenesis, and that it might have some extracellular functions. In this review, we summarize novel discoveries concerning S100A6 targets, its involvement in cellular signaling pathways, and presence in stem/progenitor cells, extracellular matrix and body fluids of diseased patients.
Collapse
|
21
|
Donato R, Sorci G, Giambanco I. S100A6 protein: functional roles. Cell Mol Life Sci 2017; 74:2749-2760. [PMID: 28417162 PMCID: PMC11107720 DOI: 10.1007/s00018-017-2526-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin β1 transduce some extracellular S100A6's effects. Dosage of serum S100A6 might aid in diagnosis in oncology.
Collapse
Affiliation(s)
- Rosario Donato
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia (Interuniversity Institute for Myology), Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| | - Guglielmo Sorci
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia (Interuniversity Institute for Myology), Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| |
Collapse
|
22
|
Loosen SH, Benz F, Niedeggen J, Schmeding M, Schüller F, Koch A, Vucur M, Tacke F, Trautwein C, Roderburg C, Neumann UP, Luedde T. Serum levels of S100A6 are unaltered in patients with resectable cholangiocarcinoma. Clin Transl Med 2016; 5:39. [PMID: 27709523 PMCID: PMC5052241 DOI: 10.1186/s40169-016-0120-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/10/2016] [Indexed: 02/12/2023] Open
Abstract
Background Elevated expression levels of S100A6, a calcium-binding low-molecular-weight protein, were demonstrated in various malignancies. Moreover, increased serum levels of S100A6 were suggested as a novel biomarker for various inflammatory and malignant diseases including lung and gastric cancer. However, up to now, serum concentrations of S100A6 have not been analyzed in patients with cholangiocarcinoma (CCA). Methods S100A6 mRNA expression levels were analyzed in human and murine CCA tumor samples, using semi-quantitative reverse transcriptase PCR. S100A6 serum concentrations were measured using an enzyme-linked immunosorbent assay in 112 patients with CCA referred to surgery for curative resection and were compared to those of 42 healthy controls. Results were correlated with clinical data. Results S100A6 mRNA expression levels were significantly up-regulated in tumor samples of CCA patients and in tumor tissue of a CCA mouse model. In contrast, serum levels of S100A6 were not significantly altered in patients with CCA compared to healthy controls. Whereas no differences became apparent within the different clinical subgroups of CCA, patients with primary sclerosing cholangitis (PSC)-based CCA displayed higher levels of S100A6 compared to the other patients. Nevertheless, patients with higher S100A6 serum concentrations showed a trend towards an impaired prognosis compared to patients with lower levels. Finally, within our cohort of patients both the diagnostic and prognostic potentials of S100A6 were similar to those of the clinically established biomarkers CEA and CA19-9. Conclusion Although S100A6 was expressed at significantly higher levels in human and murine CCA tumor samples, S100A6 serum levels were not regulated in patients with CCA and are thus not suitable for diagnosis of CCA. However, CCA-patients with elevated S100A6 displayed a trend toward an impaired prognosis compared to patients with lower S100A6 levels, supporting its further evaluation as a prognostic biomarker in CCA. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0120-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sven H Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Fabian Benz
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Jennifer Niedeggen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Maximilian Schmeding
- Department of Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Florian Schüller
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Mihael Vucur
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ulf P Neumann
- Department of Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
23
|
Predicting Diagnostic Gene Biomarkers for Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3952494. [PMID: 27579312 PMCID: PMC4989060 DOI: 10.1155/2016/3952494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
Lung cancer is the primary reason for death due to cancer worldwide, and non-small-cell lung cancer (NSCLC) is the most common subtype of lung cancer. Most patients die from complications of NSCLC due to poor diagnosis. In this paper, we aimed to predict gene biomarkers that may be of use for diagnosis of NSCLC by integrating differential gene expression analysis with functional association network analysis. We first constructed an NSCLC-specific functional association network by combining gene expression correlation with functional association. Then, we applied a network partition algorithm to divide the network into gene modules and identify the most NSCLC-specific gene modules based on their differential expression pattern in between normal and NSCLC samples. Finally, from these modules, we identified genes that exhibited the most impact on the expression of their functionally associated genes in between normal and NSCLC samples and predicted them as NSCLC biomarkers. Literature review of the top predicted gene biomarkers suggested that most of them were already considered critical for development of NSCLC.
Collapse
|
24
|
Zong J, Keskinov AA, Shurin GV, Shurin MR. Tumor-derived factors modulating dendritic cell function. Cancer Immunol Immunother 2016; 65:821-33. [PMID: 26984847 PMCID: PMC11028482 DOI: 10.1007/s00262-016-1820-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DC) play unique and diverse roles in the tumor occurrence, development, progression and response to therapy. First of all, DC can actively uptake tumor-associated antigens, process them and present antigenic peptides to T cells inducing and maintaining tumor-specific T cell responses. DC interaction with different immune effector cells may also support innate antitumor immunity, as well as humoral responses also known to inhibit tumor development in certain cases. On the other hand, DC are recruited to the tumor site by specific tumor-derived and stroma-derived factors, which may also impair DC maturation, differentiation and function, thus resulting in the deficient formation of antitumor immune response or development of DC-mediated tolerance and immune suppression. Identification of DC-stimulating and DC-suppressing/polarizing factors in the tumor environment and the mechanism of DC modulation are important for designing effective DC-based vaccines and for recovery of immunodeficient resident DC responsible for maintenance of clinically relevant antitumor immunity in patients with cancer. DC-targeting tumor-derived factors and their effects on resident and administered DC in the tumor milieu are described and discussed in this review.
Collapse
Affiliation(s)
- Jinbao Zong
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Anton A Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Luo J, Song J, Feng P, Wang Y, Long W, Liu M, Li L. Elevated serum apolipoprotein E is associated with metastasis and poor prognosis of non-small cell lung cancer. Tumour Biol 2016; 37:10715-21. [PMID: 26873483 DOI: 10.1007/s13277-016-4975-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein E (ApoE) is a factor involved in Alzheimer's disease, which recently attracted great attention as an important protein related to tumorigenesis and metastasis. However, serum ApoE levels and its diagnosis and prognosis value in non-small cell lung cancer (NSCLC) patients are still unknown. In 196 NSCLC patients and 203 healthy controls, serum ApoE was measured by turbidimetric immunoassay. The associations of serum ApoE levels with the clinicopathological characteristics and clinical outcomes of NSCLC patients were analyzed. Serum ApoE levels were obviously elevated in NSCLC patients compared with healthy controls (41.6 ± 11.63 vs. 33.8 ± 6.24 mg/L) and were associated with TNM stage, lymph node metastasis status, and distant metastasis status (all P < 0.0001). For NSCLC diagnosis, the area under the receiver operating characteristic (ROC) curve was 0.71 at a specificity of 0.90 and sensitivity of 0.47. For lymph node metastasis predicting, the area under the ROC curve was 0.68 at a specificity of 0.56 and sensitivity of 0.73. From ROC/area under curve (AUC) analysis, we used 41.25 mg/L as the serum ApoE cut-off value, to divide NSCLC patients into two groups, the median survival was 11.0 weeks (95 % CI = 8.7 to 13.3) for patients in high serum ApoE group and 20.0 weeks (95 % CI = 15.0 to 25.0) in low serum ApoE group. Serum ApoE levels elevated in NSCLC patients, which also associated with TNM stages, lymph node metastasis, distant metastasis, and poor prognosis, suggest that serum ApoE may act as a useful clinical serological biomarkers for evaluating the progress of NSCLC.
Collapse
Affiliation(s)
- Jinmei Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China.,Department of Medical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Junli Song
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China.,Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Pinning Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Yanhong Wang
- Department of Medical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Weiqing Long
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China.
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|