1
|
Diab M, Hamdi A, Al-Obeidat F, Hafez W, Cherrez-Ojeda I, Gador M, Rashid G, Elkhazin SF, Ibrahim MA, Ismail TF, Alkafaas SS. Discovery of drug transporter inhibitors tied to long noncoding RNA in resistant cancer cells; a computational model -in silico- study. Front Immunol 2025; 16:1511029. [PMID: 40352931 PMCID: PMC12061905 DOI: 10.3389/fimmu.2025.1511029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 05/14/2025] Open
Abstract
Chemotherapeutic resistance is a major obstacle to chemotherapeutic failure. Cancer cell resistance involves several mechanisms, including epithelial-to-mesenchymal transition (EMT), signaling pathway bypass, drug efflux activation, and impairment of drug entry. P-glycoproteins (P-gp) are an efflux transporter that pumps chemotherapeutic drugs out of cancer cells, resulting in chemotherapeutic resistance. Several types of long noncoding RNA (lncRNAs) have been identified in resistant cancer cells, including ODRUL, MALAT1, and ANRIL. The high expression level of ODRUL is related to the induction of ATP-binding cassette (ABC) gene expression, resulting in the emergence of doxorubicin resistance in osteosarcoma. lncRNAs are observed to be regulators of drug transporters in cancer cells such as MALAT1 and ANRIL. Targeting P-gp expression using natural products is a new strategy to overcome cancer cell resistance and improve the sensitivity of resistant cells toward chemotherapies. This review validates the inhibitory effects of natural products on P-gp expression and activity using in silico molecular docking. In silico analysis showed that Delphinidin and Asparagoside-f are the most significant natural product inhibitors of p-glycoprotein-1. These inhibitors can reverse multi-drug resistance and induce the sensitivity of resistant cancer cells toward chemotherapy based on in silico molecular docking. It is important to validate that pre-elementary docking can be confirmed using in vitro and in vivo experimental data.
Collapse
Affiliation(s)
- Mohanad Diab
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | - Amel Hamdi
- Molecular biology and Hematology, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Feras Al-Obeidat
- College of Technological Innovation at Zayed University, Abu Dhabi, United Arab Emirates
| | - Wael Hafez
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Center, Cairo, Egypt
| | - Ivan Cherrez-Ojeda
- School of Health, Universidad Espíritu Santo-Ecuador, Samborondón, Guayas, Ecuador
- Respiralab Research Group, Guayaquil, Guayas, Ecuador
| | - Muneir Gador
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Sana F. Elkhazin
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | | | | | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
4
|
Chen H, Gong Z, Zhou H, Han Y. Deciphering chemoresistance in osteosarcoma: Unveiling regulatory mechanisms and function through the lens of noncoding RNA. Drug Dev Res 2024; 85:e22167. [PMID: 38444106 DOI: 10.1002/ddr.22167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor and is prevalent in children, adolescents, and elderly individuals. It has the characteristics of high invasion and metastasis. Neoadjuvant chemotherapy combined with surgical resection is the most commonly used treatment for OS. However, the efficacy of OS is considerably diminished by chemotherapy resistance. In recent years, noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are hot topics in the field of chemotherapy resistance research. Several studies have demonstrated that ncRNAs are substantially associated with chemoresistance in OS. Thus, the present study overviews the abnormally expressed ncRNAs in OS and the molecular mechanisms involved in chemoresistance, with an emphasis on their function in promoting or inhibiting chemoresistance. ncRNAs are expected to become potential therapeutic targets for overcoming drug resistance and predictive biomarkers in OS, which are of great significance for enhancing the therapeutic effect and improving the prognosis.
Collapse
Affiliation(s)
- Hefen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhujun Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhang HB, Hu Y, Deng JL, Fang GY, Zeng Y. Insights into the involvement of long non-coding RNAs in doxorubicin resistance of cancer. Front Pharmacol 2023; 14:1243934. [PMID: 37781691 PMCID: PMC10540237 DOI: 10.3389/fphar.2023.1243934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Doxorubicin is one of the most classical chemotherapeutic drugs for the treatment of cancer. However, resistance to the cytotoxic effects of doxorubicin in tumor cells remains a major obstacle. Aberrant expression of long non-coding RNAs (lncRNAs) has been associated with tumorigenesis and development via regulation of chromatin remodeling, transcription, and post-transcriptional processing. Emerging studies have also revealed that dysregulation of lncRNAs mediates the development of drug resistance through multiple molecules and pathways. In this review, we focus on the role and mechanism of lncRNAs in the progress of doxorubicin resistance in various cancers, which mainly include cellular drug transport, cell cycle disorder, anti-apoptosis, epithelial-mesenchymal transition, cancer stem cells, autophagy, tumor microenvironment, metabolic reprogramming and signaling pathways. This review is aimed to provide potential therapeutic targets for future cancer therapy, especially for the reversal of chemoresistance.
Collapse
Affiliation(s)
- Hai-Bo Zhang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yang Hu
- Guangzhou Institute of Respiratory Disease and China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
6
|
Hargadon KM, Strong EW. The FOXC2 Transcription Factor: A Master Regulator of Chemoresistance in Cancer. Technol Cancer Res Treat 2023; 22:15330338231155284. [PMID: 36740986 PMCID: PMC9903043 DOI: 10.1177/15330338231155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FOXC2, a member of the forkhead box family of transcription factors, is an emerging oncogene that has been linked to several hallmarks of cancer progression. Among its many oncogenic functions is the promotion of drug resistance, with evidence supporting roles for FOXC2 in escape from broad classes of chemotherapeutics across an array of cancer types. In this Mini-Review, we highlight the current understanding of the mechanisms by which FOXC2 drives cancer chemoresistance, including its roles in the promotion of epithelial-mesenchymal transition, induction of multidrug transporters, activation of the oxidative stress response, and deregulation of cell survival signaling pathways. We discuss the clinical implications of these findings, including strategies for modulating FOXC2-associated chemoresistance in cancer. Particular attention is given to ways in which FOXC2 and its downstream gene products and pathways can be targeted to restore chemosensitivity in cancer cells. In addition, the utility of FOXC2 expression as a predictor of patient response to chemotherapy is also highlighted, with emphasis on the value of FOXC2 as a novel biomarker that can be used to guide therapeutic choice towards regimens most likely to achieve clinical benefit during frontline therapy.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA,Kristian M. Hargadon, PhD, Hampden-Sydney College, Brown Student Center, Box 837, Hampden-Sydney, VA 23943, USA.
| | - Elijah W. Strong
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA
| |
Collapse
|
7
|
Tippett VL, Tattersall L, Ab Latif NB, Shah KM, Lawson MA, Gartland A. The strategy and clinical relevance of in vitro models of MAP resistance in osteosarcoma: a systematic review. Oncogene 2023; 42:259-277. [PMID: 36434179 PMCID: PMC9859755 DOI: 10.1038/s41388-022-02529-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
Over the last 40 years osteosarcoma (OS) survival has stagnated with patients commonly resistant to neoadjuvant MAP chemotherapy involving high dose methotrexate, adriamycin (doxorubicin) and platinum (cisplatin). Due to the rarity of OS, the generation of relevant cell models as tools for drug discovery is paramount to tackling this issue. Four literature databases were systematically searched using pre-determined search terms to identify MAP resistant OS cell lines and patients. Drug exposure strategies used to develop cell models of resistance and the impact of these on the differential expression of resistance associated genes, proteins and non-coding RNAs are reported. A comparison to clinical studies in relation to chemotherapy response, relapse and metastasis was then made. The search retrieved 1891 papers of which 52 were relevant. Commonly, cell lines were derived from Caucasian patients with epithelial or fibroblastic subtypes. The strategy for model development varied with most opting for continuous over pulsed chemotherapy exposure. A diverse resistance level was observed between models (2.2-338 fold) with 63% of models exceeding clinically reported resistance levels which may affect the expression of chemoresistance factors. In vitro p-glycoprotein overexpression is a key resistance mechanism; however, from the available literature to date this does not translate to innate resistance in patients. The selection of models with a lower fold resistance may better reflect the clinical situation. A comparison of standardised strategies in models and variants should be performed to determine their impact on resistance markers. Clinical studies are required to determine the impact of resistance markers identified in vitro in poor responders to MAP treatment, specifically with respect to innate and acquired resistance. A shift from seeking disputed and undruggable mechanisms to clinically relevant resistance mechanisms may identify key resistance markers that can be targeted for patient benefit after a 40-year wait.
Collapse
Affiliation(s)
- Victoria L Tippett
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Norain B Ab Latif
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Universiti Kuala Lumpur Royal College of Medicine Perak, No. 3 Jalan Greentown, 30450, Ipoh, Perak, Malaysia
| | - Karan M Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Michelle A Lawson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
8
|
Li S, Zeng M, Yang L, Tan J, Yang J, Guan H, Kuang M, Li J. Lnc-SELPLG-2:1 enhanced osteosarcoma oncogenesis via hsa-miR-10a-5p and the BTRC cascade. BMC Cancer 2022; 22:1044. [PMID: 36199080 PMCID: PMC9533553 DOI: 10.1186/s12885-022-10040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the potential role of Long Non-coding RNAs (lncRNAs) in the progression of osteosarcoma. METHODS The candidate lncRNAs were screened with RNA-seq and confirmed with quantitative real-time PCR. Using MTS, transwell assay, and flow cytometric analysis, the effects of overexpressed lnc-SELPLG-2:1 on cell functions were determined. Immunohistochemical staining, fluorescence in situ hybridization, and luciferase reporter assay were used to evaluate the potential mechanism of lnc-SELPLG-2:1 in vivo and in vitro using a tumor model. Moreover, the effects of overexpression of hsa-miR-10a-5p on the functions of SaOS2 cells were determined using functional cell analysis. A response test was used to confirm the mechanism by which lnc-SELPLG-2:1 sponge hsa-miR-10a-5p promotes the expression of BTRC to regulate osteosarcoma. RESULTS Lnc-SELPLG-2:1 was highly expressed in osteosarcoma compared to normal cells and bone and marrow samples. Inhibition of lnc-SELPLG-2:1 accelerated cell apoptosis and suppressed cell proliferation, migration, and invasion, whereas lnc-SELPLG-2:1 overexpression had the opposite effect. Moreover, inhibiting lnc-SELPLG-2:1 in an in vivo model decreased tumor size and suppressed the expression of cell migration-related proteins. The prediction, dual luciferase assay, and response test results indicated that hsa-miR-10-5p and BTRC were involved in the lnc-SELPLG-2:1 cascade. Unlike lnc-SELPLG-2:1, hsa-hsa-miR-10a-5p had opposite expression and function. Competitive binding of lnc-SELPLG-2:1 to hsa-hsa-miR-10a-5p prevented BTRC from miRNA-mediated degradation, thereby activating the expression of VIM, MMP9, and MMP2, promoting osteosarcoma cell proliferation, migration, and invasion, and inhibiting apoptosis. CONCLUSION Lnc-SELPLG-2:1 is an oncogenesis activator in osteosarcoma, and its functions are performed via hsa-miR-10a-5p /BTRC cascade.
Collapse
Affiliation(s)
- Shiyuan Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China.
| | - Ming Zeng
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Lin Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Jianshao Tan
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Jianqi Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Hongye Guan
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Manyuan Kuang
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Jiaying Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| |
Collapse
|
9
|
Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int J Mol Sci 2022; 23:ijms231710133. [PMID: 36077530 PMCID: PMC9456385 DOI: 10.3390/ijms231710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell’s “building blocks” towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.
Collapse
|
10
|
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long Non-coding RNAs (lncRNAs) signaling in Cancer Chemoresistance: From Prediction to Druggability. Drug Resist Updat 2022; 65:100866. [DOI: 10.1016/j.drup.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
11
|
Fei D, Yuan H, Zhao M, Zhao D. LncRNA FGD5-AS1 potentiates autophagy-associated doxorubicin resistance by regulating the miR-154-5p/WNT5A axis in osteosarcoma. Cell Biol Int 2022; 46:1937-1946. [PMID: 36041209 DOI: 10.1002/cbin.11889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Osteosarcoma is prevalent in children and adolescent. The oncogenic function of long-chain noncoding RNA (lncRNA) FGD5 antisense RNA 1 (FGD5-AS1) has been reported. However, the function of FGD5-AS1 in doxorubicin-resistance in osteosarcoma remains to be illucidated. Quantitative real-time PCR (qRT-PCR) and western blot analysis (WB) were used to measure the expression of FGD5-AS1, miR-154-5p, WNT5A and autophagy proteins. MTT assay was used to assess cell viability and transwell assay was performed to evaluate migration. A nude mouse xenograft model was developed to verify the function of FGD5-AS1 in vivo. FGD5-AS1 was upregulated in doxorubicin-resistant (DXR) osteosarcoma cells. Knockdown of FGD5-AS1 suppressed osteosarcoma cell proliferation, migration, and autophagy. FGD5-AS1 upregulated WNT5A expression via sponging miR-154-5p. Furthermore, FGD5-AS1 enhanced osteosarcoma cell chemotherapy resistance through upregulation of WNT5A by inhibiting miR-154-5p. Suppression of FGD5-AS1 significantly suppressed tumor growth in nude mice. FGD5-AS1 may promote chemoresistance through WNT5A-induced autophagy by sponging miR-154-5p in osteosarcoma cells.
Collapse
Affiliation(s)
- Dan Fei
- Department of Ultrasonographic, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongping Yuan
- Department of Nephrology, Jilin FAW General Hospital, Changchun, China
| | - Mingming Zhao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongxu Zhao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
He Y, Zhou H, Xu H, You H, Cheng H. Construction of an Immune-Related lncRNA Signature That Predicts Prognosis and Immune Microenvironment in Osteosarcoma Patients. Front Oncol 2022; 12:769202. [PMID: 35494024 PMCID: PMC9047752 DOI: 10.3389/fonc.2022.769202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is one of the most common bone tumors in teenagers. We hope to provide a reliable method to predict the prognosis of osteosarcoma and find potential targets for early diagnosis and precise treatment. To address this issue, we performed a detailed bioinformatics analysis based on the Cancer Genome Atlas (TCGA). A total of 85 osteosarcoma patients with gene expression data and clinicopathological features were included in this study, which was considered the entire set. They were randomly divided into a train set and a test set. We identified six lncRNAs (ELFN1-AS1, LINC00837, OLMALINC, AL669970.3, AC005332.4 and AC023157.3), and constructed a signature that exhibited good predictive ability of patient survival and metastasis. What’s more, we found that risk score calculated by the signature was positively correlated to tumor purity, CD4+ naive T cells, and negatively correlated to CD8+ T cells. Furthermore, we investigated each lncRNA in the signature and found that these six lncRNAs were associated with tumorigenesis and immune cells in the tumor microenvironment. In conclusion, we constructed and validated a signature, which had good performance in the prediction of survival, metastasis and immune microenvironment. Our study indicated possible mechanisms of these lncRNAs in the development of osteosarcoma, which may provide new insights into the precise treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongbo You, ; Hao Cheng,
| | - Hao Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongbo You, ; Hao Cheng,
| |
Collapse
|
13
|
Growth arrest-specific 5 lncRNA as a valuable biomarker of chemoresistance in osteosarcoma. Anticancer Drugs 2022; 33:278-285. [PMID: 35045526 DOI: 10.1097/cad.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and teenagers, and it is characterised by drug resistance and high metastatic potential. Increasing studies have highlighted the critical roles of long noncoding RNAs (lncRNAs) as oncogenes or tumour suppressors as well as new biomarkers and therapeutic targets in osteosarcoma. The growth arrestspecific 5 (GAS5) lncRNA can function as a tumour suppressor in several cancers. The present study aimed to validate GAS5 and other chemoresistanceassociated lncRNAs as biomarkers in a cohort of primary osteosarcoma samples, to obtain predictive information on resistance or sensitivity to treatment. The GAS5 and a panel of lncRNAs related to chemoresistance [SNGH1, FOXD2-AS1, deleted in lymphocytic leukemia (DLEU2) and LINC00963] were evaluated in a cohort of osteosarcoma patients enrolled at the Careggi University Hospital. Total RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections and the expression levels of the lncRNAs were quantified by qPCR. A bioinformatic analysis on deposited RNA-seq data was performed to validate the qPCR results. Clustering analysis shows that GAS5 could be linked to the expression of isoforms 02 and 04 of the lncRNA DLEU2, whereas the DLEU2 isoform 08 is linked to the lncRNA LINC00963. We found that GAS5 is significantly increased in patients with a good prognosis and is expressed differently between chemosensitive and chemoresistant osteosarcoma patients. However, the results obtained are not concordant with the in-silico analysis performed on the TARGET osteosarcoma dataset. In the future, we would enlarge the case series, including different disease settings.
Collapse
|
14
|
Serra M, Hattinger CM, Pasello M, Casotti C, Fantoni L, Riganti C, Manara MC. Impact of ABC Transporters in Osteosarcoma and Ewing's Sarcoma: Which Are Involved in Chemoresistance and Which Are Not? Cells 2021; 10:cells10092461. [PMID: 34572110 PMCID: PMC8467338 DOI: 10.3390/cells10092461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily consists of several proteins with a wide repertoire of functions. Under physiological conditions, ABC transporters are involved in cellular trafficking of hormones, lipids, ions, xenobiotics, and several other molecules, including a broad spectrum of chemical substrates and chemotherapeutic drugs. In cancers, ABC transporters have been intensely studied over the past decades, mostly for their involvement in the multidrug resistance (MDR) phenotype. This review provides an overview of ABC transporters, both related and unrelated to MDR, which have been studied in osteosarcoma and Ewing's sarcoma. Since different backbone drugs used in first-line or rescue chemotherapy for these two rare bone sarcomas are substrates of ABC transporters, this review particularly focused on studies that have provided findings that have been either translated to clinical practice or have indicated new candidate therapeutic targets; however, findings obtained from ABC transporters that were not directly involved in drug resistance were also discussed, in order to provide a more complete overview of the biological impacts of these molecules in osteosarcoma and Ewing's sarcoma. Finally, therapeutic strategies and agents aimed to circumvent ABC-mediated chemoresistance were discussed to provide future perspectives about possible treatment improvements of these neoplasms.
Collapse
Affiliation(s)
- Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
- Correspondence: ; Tel.: +39-051-6366762
| | - Claudia Maria Hattinger
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Casotti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Leonardo Fantoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy;
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| |
Collapse
|
15
|
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett 2021; 26:39. [PMID: 34425750 PMCID: PMC8381522 DOI: 10.1186/s11658-021-00282-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Resistance against conventional chemotherapeutic agents is one of the main reasons for tumor relapse and poor clinical outcomes in cancer patients. Various mechanisms are associated with drug resistance, including drug efflux, cell cycle, DNA repair and apoptosis. Doxorubicin (DOX) is a widely used first-line anti-cancer drug that functions as a DNA topoisomerase II inhibitor. However, DOX resistance has emerged as a large hurdle in efficient tumor therapy. Furthermore, despite its wide clinical application, DOX is a double-edged sword: it can damage normal tissues and affect the quality of patients’ lives during and after treatment. It is essential to clarify the molecular basis of DOX resistance to support the development of novel therapeutic modalities with fewer and/or lower-impact side effects in cancer patients. Long non-coding RNAs (lncRNAs) have critical roles in the drug resistance of various tumors. In this review, we summarize the state of knowledge on all the lncRNAs associated with DOX resistance. The majority are involved in promoting DOX resistance. This review paves the way to introducing an lncRNA panel marker for the prediction of the DOX response and clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Wang F, Kong L, Pu Y, Chao F, Zang C, Qin W, Zhao F, Cai S. Long Noncoding RNA DICER1-AS1 Functions in Methylation Regulation on the Multi-Drugresistance of Osteosarcoma Cells via miR-34a-5p and GADD45A. Front Oncol 2021; 11:685881. [PMID: 34307152 PMCID: PMC8299526 DOI: 10.3389/fonc.2021.685881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that commonly occurs in children and adolescents. Long noncoding RNAs (lncRNAs) are recognized as a novel class of regulators of gene expression associated with tumorigenesis. However, the effect and mechanism of lncRNAs in OS tumorigenesis and drug resistance have not been characterized. The purpose of the study is to screen potential biomarker and therapeutic target against OS. We compared the lncRNA expression profiles between OS cell lines with different drug resistance levels using RNA-seq analysis and found that lncRNA DICER1-AS1 was significantly differentially expressed in multi-drugresistant OS cells SJSA-1 versus multi-drugsensitive OS cells G-292. Bisulfite Sequencing PCR (BSP) assay was performed to analyze the differential methylation status of the promoter region of DICER1-AS1 in four OS cells. Subsequently, in vitro gain- and loss-of-function experiments demonstrated the roles of DICER1-AS1 and miR-34a-5p in the multi-drugresistance of OS cells. The main findings is that DICER1-AS1 directly binds to miR-34a-5p, and their expression has a negative correlation with each other. The hypermethylation of the promoter region of DICER1-AS1 silenced its expression in the drugresistant cells SJSA-1 and MNNG/HOS. Moreover, we found that growth arrest and DNA damage-inducible alpha (GADD45A) participates in the DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, probably via the cell cycle/pRb-E2F pathway. Our results revealed DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, a new lncRNA-regulated network in OS tumorigenesis, suggested that DICER1-AS1 can be considered as a potential biomarker and therapeutic target against OS cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, West district of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunbao Zang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Qin
- Department of Science and Education Section, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Zhao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|
18
|
Wu K, Hu L, Lv X, Chen J, Yan Z, Jiang J, Cheng Y, Hou J. Long non-coding RNA MIR4435-1HG promotes cancer growth in clear cell renal cell carcinoma. Cancer Biomark 2021; 29:39-50. [PMID: 32538823 DOI: 10.3233/cbm-201451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in cancer development, yet their roles in renal carcinoma remain unclear. OBJECTIVE We performed this study in order to investigate the expression and roles of lncRNAs in renal cell carcinoma. METHODS In this study, we investigated the expression of lncRNAs in renal cell carcinoma through microarray analysis. Quantitative real-time PCR was performed to measure the expression of lncRNAs. Gain- or loss-of-function experiments were performed to investigate the roles of lncRNAs in cell proliferation and apoptosis. RNA pull-down and western blotting were performed to explore the underlying mechanism. RESULTS The microarray analysis identified an upregulated lncRNA MIR4435-1HG in renal carcinoma. The expression level of MIR4435-1HG was correlated with TNM stage, tumor size, and Fuhrman grade. High expression of MIR4435-1HG indicated poor prognosis. MIR4435-1HG knockdown inhibited cell proliferation, and suppressed the migrating and invasive capacity of renal carcinoma cells. RNA pull-down followed by mass spectrometry revealed an interaction between MIR4435-1HG and pyruvate carboxylase, which was later corroborated by western blotting. CONCLUSIONS MIR4435-1HG plays a critical role in the oncogenesis of renal cell carcinoma and may serve as a potential biomarker for renal cell carcinoma.
Collapse
Affiliation(s)
- Kerong Wu
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China.,Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China.,Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Linkun Hu
- Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China.,Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Xiuyi Lv
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Junfeng Chen
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Zejun Yan
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Junhui Jiang
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yue Cheng
- Translational Research Laboratory for Urology, Department of Urology, Ningbo Clinical Research Center for Urological Disease, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jianquan Hou
- Department of Urology, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
|
20
|
Decoding LncRNAs. Cancers (Basel) 2021; 13:cancers13112643. [PMID: 34072257 PMCID: PMC8199187 DOI: 10.3390/cancers13112643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been considered as unimportant additions to the transcriptome. Yet, in light of numerous studies, it has become clear that ncRNAs play important roles in development, health and disease. Long-ignored, long non-coding RNAs (lncRNAs), ncRNAs made of more than 200 nucleotides have gained attention due to their involvement as drivers or suppressors of a myriad of tumours. The detailed understanding of some of their functions, structures and interactomes has been the result of interdisciplinary efforts, as in many cases, new methods need to be created or adapted to characterise these molecules. Unlike most reviews on lncRNAs, we summarize the achievements on lncRNA studies by taking into consideration the approaches for identification of lncRNA functions, interactomes, and structural arrangements. We also provide information about the recent data on the involvement of lncRNAs in diseases and present applications of these molecules, especially in medicine.
Collapse
|
21
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Zhang W, Ren X, Qi L, Zhang C, Tu C, Li Z. The value of lncRNAs as prognostic biomarkers on clinical outcomes in osteosarcoma: a meta-analysis. BMC Cancer 2021; 21:202. [PMID: 33639865 PMCID: PMC7912917 DOI: 10.1186/s12885-021-07882-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background In recent years, emerging studies have demonstrated critical functions and potential clinical applications of long non-coding RNA (lncRNA) in osteosarcoma. To further validate the prognostic value of multiple lncRNAs, we have conducted this updated meta-analysis. Methods Literature retrieval was conducted by searching PubMed, Web of Science and the Cochrane Library (last update by October 2, 2019). A meta-analysis was performed to explore association between lncRNAs expression and overall survival (OS) of osteosarcoma patients. Relationships between lncRNAs expression and other clinicopathological features were also analyzed respectively. Results Overall, 4351 patients from 62 studies were included in this meta-analysis and 25 lncRNAs were identified. Pooled analyses showed that high expression of 14 lncRNAs connoted worse OS, while two lncRNAs were associated with positive outcome. Further, analysis toward osteosarcoma clinicopathologic features demonstrated that overexpression of TUG1 and XIST indicated poor clinical parameters of patients. Conclusions This meta-analysis has elucidated the prognostic potential of 16 lncRNAs in human osteosarcoma. Evidently, desperate expression and functional targets of these lncRNAs offer new approaches for prognosis and therapy of osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07882-w.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Lin Z, Xie X, Lu S, Liu T. Noncoding RNAs in osteosarcoma: Implications for drug resistance. Cancer Lett 2021; 504:91-103. [PMID: 33587978 DOI: 10.1016/j.canlet.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/09/2023]
Abstract
Osteosarcoma is the most frequent bone malignancy in children and adolescents. Despite advances of surgery and chemotherapy in osteosarcoma over the past decades, overall survival rates of osteosarcoma have reached a plateau. The development of multi-drug resistance (MDR) has become the main obstacle in improving chemotherapeutic effects in osteosarcoma treatment. Therefore, understanding detailed mechanisms of chemoresistance and developing novel therapeutic targets to overcome chemoresistance are crucial to improve the prognosis of osteosarcoma patients. Accumulating evidence has proved that multiple noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) play pivotal roles in osteosarcoma progression. Notably, a great number of ncRNAs are abnormally expressed and can regulate chemosensitivity through various mechanisms in osteosarcoma. In this review, we systematically summarize the roles of ncRNAs as well as the molecular mechanisms in modulating drug resistance of osteosarcoma and discuss the potential roles of ncRNAs as biomarkers and novel therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
24
|
Jayasuriya R, Ramkumar KM. Role of long non-coding RNAs on the regulation of Nrf2 in chronic diseases. Life Sci 2021; 270:119025. [PMID: 33450255 DOI: 10.1016/j.lfs.2021.119025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
Studies have identified dysregulated long non-coding RNA (lncRNA) in several diseases at transcriptional, translational, and post-translational levels. Although our mechanistic knowledge on the regulation of lncRNAs is still limited, one of the mechanisms of action attributed is binding and regulating transcription factors, thus controlling gene expression and protein function. One such transcription factor is nuclear factor erythroid 2-related factor 2 (Nrf2), which plays a critical biological role in maintaining cellular homeostasis at multiple levels in physiological and pathophysiological conditions. The levels of Nrf2 were found to be down-regulated in many chronic diseases, signifying that Nrf2 can be a key therapeutic target. Few lncRNAs like lncRNA ROR, ENSMUST00000125413, lncRNA ODRUL, Nrf2-lncRNA have been associated with the Nrf2 signaling pathway in response to various stimuli, including stress. This review discusses the regulation of Nrf2 in different responses and the potential role of specific lncRNA in modulating its transcriptional activities. This review further helps to enhance our knowledge on the regulatory role of the critical antioxidant transcription factor, Nrf2.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
25
|
Prudowsky ZD, Yustein JT. Recent Insights into Therapy Resistance in Osteosarcoma. Cancers (Basel) 2020; 13:E83. [PMID: 33396725 PMCID: PMC7795058 DOI: 10.3390/cancers13010083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma, the most common bone malignancy of childhood, has been a challenge to treat and cure. Standard chemotherapy regimens work well for many patients, but there remain minimal options for patients with progressive or resistant disease, as clinical trials over recent decades have failed to significantly improve survival. A better understanding of therapy resistance is necessary to improve current treatments and design new strategies for future treatment options. In this review, we discuss known mechanisms and recent scientific advancements regarding osteosarcoma and its patterns of resistance against chemotherapy, radiation, and other newly-introduced therapeutics.
Collapse
Affiliation(s)
- Zachary D. Prudowsky
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Bhattacharjee S, Li J, Dashwood RH. Emerging crosstalk between long non-coding RNAs and Nrf2 signaling. Cancer Lett 2020; 490:154-164. [DOI: 10.1016/j.canlet.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
27
|
Wang K, Ye X, Yang C, Chen G, Yao N, Kang Z, Shi W. Comprehensive Analysis of Novel lncRNA-TF Regulatory Cross Talks and Identification of Core lncRNA-TF Feedback Loops in Sarcoma. DNA Cell Biol 2020; 39:1558-1572. [PMID: 32845706 DOI: 10.1089/dna.2020.5385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are a broad family of cancers that arise from cells of mesenchymal origin in virtually every tissue of the body. Some transcription factors (TFs) have been reported to be involved in the pathogenesis and metastasis of sarcomas. The expression of certain long noncoding RNAs (lncRNAs) has been correlated with the degree of cancer prognosis. There is an urgent need to effectively integrate TFs and lncRNA/microRNA/mRNA regulatory axis and further identify more key regulators that play crucial roles in sarcomas. We performed a network-based computational analysis to investigate the lncRNA-TF cross talks via integrating lncRNA-TF ceRNA interactions and TF-TF protein-protein interactions. Multiple topology analyses were performed to the sarcomas-related global lncRNA-TF network. Several lncRNAs or TFs with central topology structures were identified as key regulators and used to locate a hub-associated lncRNA-TF subnetwork. Three functional modules were identified from the sarcomas-related global lncRNA-TF network, which have shown significant pathway enrichment and prognosis capability. The lncRNAs and TFs of these modules were shown to participate in sarcoma-related biological phenomena through involving in mitogen-activated protein kinases (MAPK), Jak-STAT, and transforming growth factor (TGF-beta) signaling pathways. More importantly, a subset of core lncRNA-TF cross talks that might form positive feedback loops to control biological processes of sarcomas was identified. These core lncRNA-TF positive feedback loops showed more TF binding affinity than other lncRNAs. All the results can help us uncover the molecular mechanism of sarcomas and provide a novel way for diagnosis biomarker and therapeutic target identification.
Collapse
Affiliation(s)
- Ke Wang
- Department of Orthopedics, Daqing No. 4 Hospital, Daqing, China
| | - Xiangling Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Chengshan Yang
- Department of PT2, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Guocai Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Nan Yao
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Zhengyang Kang
- Department of Orthopedics, The Second People's Hospital of Panyu, Guangzhou, China
| | - Weihong Shi
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Oncology, Huizhou Hospital of Guangzhou University of Traditional Chinese Medicine, Huizhou, China
| |
Collapse
|
28
|
Singh D, Khan MA, Siddique HR. Emerging role of long non-coding RNAs in cancer chemoresistance: unravelling the multifaceted role and prospective therapeutic targeting. Mol Biol Rep 2020; 47:5569-5585. [PMID: 32601922 DOI: 10.1007/s11033-020-05609-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy is one of the important treatment modules in early as well as advanced stages of cancer. However, the major limitation of chemotherapy is the development of chemoresistance in the transformed cells of cancer patients, which leads to cancer recurrence. Long non-coding RNAs (lncRNA) are the transcripts longer than 200 nucleotides in length, which are reported to associate with the initiation, progression, recurrence, and metastasis of different cancers. Several lncRNAs have been implicated in the prevalence of chemoresistant phenotypes and also in the restoration of drug sensitivity in chemoresistant cells. LncRNAs such as HOTAIR, H19, and a lot more are involved in the chemoresistance of cancer cells. Therefore, targeting the lncRNAs may serve as a novel strategy for treating chemoresistant cancer. This review throws light on the role of lncRNA in chemoresistance along with the perspective of the therapeutic targets for the treatment of multiple cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
29
|
Qu Y, Tan HY, Chan YT, Jiang H, Wang N, Wang D. The functional role of long noncoding RNA in resistance to anticancer treatment. Ther Adv Med Oncol 2020; 12:1758835920927850. [PMID: 32536982 PMCID: PMC7268113 DOI: 10.1177/1758835920927850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the fundamental methods of cancer treatment. However, drug resistance remains the main cause of clinical treatment failure. We comprehensively review the newly identified roles of long noncoding RNAs (lncRNAs) in oncobiology that are associated with drug resistance. The expression of lncRNAs is tissue-specific and often dysregulated in human cancers. Accumulating evidence suggests that lncRNAs are involved in chemoresistance of cancer cells. The main lncRNA-driven mechanisms of chemoresistance include regulation of drug efflux, DNA damage repair, cell cycle, apoptosis, epithelial-mesenchymal transition (EMT), induction of signaling pathways, and angiogenesis. LncRNA-driven mechanisms of resistance to various antineoplastic agents have been studied extensively. There are unique mechanisms of resistance against different types of drugs, and each mechanism may have more than one contributing factor. We summarize the emerging strategies that can be used to overcome the technical challenges in studying and addressing lncRNA-mediated drug resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Hongbo Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
30
|
Jiang W, Xia J, Xie S, Zou R, Pan S, Wang ZW, Assaraf YG, Zhu X. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50:100683. [DOI: 10.1016/j.drup.2020.100683] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
31
|
Xu S, Gong Y, Yin Y, Xing H, Zhang N. The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed Pharmacother 2020; 127:110141. [PMID: 32334375 DOI: 10.1016/j.biopha.2020.110141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a bone tumor prevalent in children and young adults. LncRNAs are a family of non-protein-coding transcripts longer than 200 nucleotides. The tumor-related pathological functions of lncRNAs include proliferation, migration, and chemotherapy resistance, all of which have been widely acknowledged in research on osteosarcoma. In addition, compelling evidence suggests that lncRNAs could serve as diagnostic indicators, prognostic biomarkers, and targets for disease treatment. In this review, we systematically summarize how lncRNAs regulate tumorigenesis, invasion and therapeutic resistance. By deepening our knowledge of the relationship between lncRNAs and osteosarcoma, we hope to translate research findings into clinical applications as soon as possible.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Yin
- Department of Gastroenterology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Hongyuan Xing
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ning Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
32
|
Zhao W, Shan B, He D, Cheng Y, Li B, Zhang C, Duan C. Recent Progress in Characterizing Long Noncoding RNAs in Cancer Drug Resistance. J Cancer 2019; 10:6693-6702. [PMID: 31777598 PMCID: PMC6856905 DOI: 10.7150/jca.30877] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is an important cause of failure in cancer chemotherapies. A large number of long noncoding RNAs (lncRNAs) have been found to be related to drug resistance in cancers. Therefore, lncRNAs provide potential targets for cancer therapies. The lncRNAs involved in cancer drug resistance are attracting interest from an increasing number of researchers. This review summarizes the latest research on the mechanisms and functions of lncRNAs in cancer drug resistance and envisages their future developments and therapeutic applications. This research suggests that lncRNAs regulate drug resistance through multiple mechanisms. LncRNAs do not affect drug resistance directly; usually, they do so by regulating the expression of some intermediate regulatory factors. In addition, lncRNAs exhibit a diversity of functions in cancer drug resistance. The overexpression of most lncRNAs promotes drug resistance, while a few lncRNAs have inhibitory effects.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bin Shan
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Dan He
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha, PR China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, PR China
| | - Chaojun Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
33
|
Differential expression and bioinformatics analysis of circRNA in osteosarcoma. Biosci Rep 2019; 39:BSR20181514. [PMID: 31036604 PMCID: PMC6522716 DOI: 10.1042/bsr20181514] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
AIM This research aims to investigate the expression profile of circRNA in osteosarcoma and to identify the underlying pathogenesis core genes of osteosarcoma.Methods: Illumina HiSeq was used to screen differentially expressed circRNAs between the tumour tissues and paracancerous tissues of three osteosarcoma patients. Bioinformatics analysis was used to analyse their potential functions. Five differentially expressed circRNAs were selected to detect the relative expression level in tumour and paracancerous tissues of ten osteosarcoma patients by real-time PCR. The databases such as DisGeNET and miRWalk were used to collect related genes or miRNAs. RESULTS A total of 259 differentially expressed circRNAs were evaluated in patients with osteosarcoma, of which 132 were up-regulated and 127 were down-regulated. Compared with that in paracancerous tissues, circ_32279 and circ_24831 were significantly down-regulated while circ_2137 and circ_20403 were significantly up-regulated in osteosarcoma tissues. The differential expression of circRNA is closely linked to biological processes and molecular functions. The difference in circRNA was mainly linked to the 'phosphatidylinositol signalling system' signal pathway and the 'inositol phosphate metabolism' signal pathway. CONCLUSION The present study identified a profile of abnormal regulation of circRNA in osteosarcoma. Bioinformatics analysis indicates that the deregulated circRNAs may be related to the occurrence and development of osteosarcoma.
Collapse
|
34
|
Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Drug resistance-related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies. J Cell Mol Med 2019; 23:2280-2292. [PMID: 30724027 PMCID: PMC6433687 DOI: 10.1111/jcmm.14064] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Although the application of multiple chemotherapy brought revolutionary changes to improve overall survival of osteosarcoma patients, the existence of multidrug resistance (MDR) has become a great challenge for successful osteosarcoma treatment in recent decades. Substantial studies have revealed various underlying mechanisms of MDR in cancers. As for osteosarcoma, evidence has highlighted that microRNAs (miRNAs) can mediate in the processes of DNA damage response, apoptosis avoidance, autophagy induction, activation of cancer stem cells, and signal transduction. Besides, these drug resistance‐related miRNAs showed much promise for serving as candidates for predictive biomarkers of poor outcomes and shorter survival time, and therapeutic targets to reverse drug resistance and overcome treatment refractoriness. This review aims to demonstrate the potential molecular mechanisms of miRNAs‐regulated drug resistance in osteosarcoma, and provide insight in translating basic evidence into therapeutic strategies.
Collapse
Affiliation(s)
- Ruiling Chen
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Long noncoding RNAs in cancer cells. Cancer Lett 2019; 419:152-166. [PMID: 29414303 DOI: 10.1016/j.canlet.2018.01.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) has recently been investigated as key modulators that regulate many biological processes in human cancers via diverse mechanisms. LncRNAs can interact with macromolecules such as DNA, RNA, or protein to exert cellular effects and to act as either tumor promoters or tumor suppressors in various malignancies. Moreover, the aberrant expression of lncRNAs may be detected in multiple cancer phenotypes by employing the rapidly developing modern gene chip technology and bioinformatics analysis. Herein, we highlight the mechanisms of action of lncRNAs, their functional cellular roles and their involvement in cancer progression. Finally, we provide an overview of recent progress in the lncRNA field and future potential for lncRNAs as cancer diagnostic markers and therapeutics.
Collapse
|
36
|
Zhang S, Yuan Y, Zhang Z, Guo J, Li J, Zhao K, Qin Y, Qiu C. LncRNA FOXC2-AS1 protects cardiomyocytes from doxorubicin-induced cardiotoxicity through activation of WNT1-inducible signaling pathway protein-1. Biosci Biotechnol Biochem 2018; 83:653-658. [PMID: 30558506 DOI: 10.1080/09168451.2018.1553606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (Dox) is an anthracycline antibiotic that has been used to treat different cancers. Dox-induced cardiotoxicity is common in clinical practice, while its mechanism is unknown. It has been proved that lncRNA FOXC2-AS1 may promote doxorubicin resistance and WNT1-inducible signaling pathway protein-1 (WISP1) blocks doxorubicin-induced cardiomyocyte death. Our study aimed to investigate the involvement of lncRNA FOXC2-AS1 and WISP1 in doxorubicin-induced cardiotoxicity and to explore their interactions. In our study we observed that FOXC2-AS1 and WISP1 mRNA were downregulated in heart tissues of mice with Dox-induced cardiotoxicity. FOXC2-AS1 and WISP1 mRNA expression were positively correlated in mice with Dox-induced cardiotoxicity but not in healthy mice. Overexpression of FOXC2-AS1 promoted to viability of mice cardiomyocytes under Dox treatment and also increased the expression level of WISP1. In contrast, WISP1 overexpression showed no significant effect on FOXC2-AS1. We therefore conclude that lncRNA FOXC2-AS1 may upregulate WISP1 to protect cardiomyocytes from doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shenwei Zhang
- a Department of cardiology , the first affiliated hospital of Zhengzhou university , Zhengzhou City , Henan Province , PR. China
| | - Yiqiang Yuan
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Zheng Zhang
- c Department of cardiology , The General Hospital of the PLA Rocket Force , Beijing City , PR. China
| | - Jing Guo
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Jing Li
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Kui Zhao
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Yanping Qin
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Chunguang Qiu
- a Department of cardiology , the first affiliated hospital of Zhengzhou university , Zhengzhou City , Henan Province , PR. China
| |
Collapse
|
37
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
38
|
Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Invest New Drugs 2018; 36:1116-1132. [DOI: 10.1007/s10637-018-0624-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
|
39
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol 2018; 28:287-301. [PMID: 29274663 PMCID: PMC5869122 DOI: 10.1016/j.tcb.2017.11.008] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are encoded by a vast less explored region of the human genome, may hold missing drivers of cancer and have gained attention recently as a potentially crucial layer of cancer cell regulation. lncRNAs are aberrantly expressed in a broad spectrum of cancers, and they play key roles in promoting and maintaining tumor initiation and progression, demonstrating their clinical potential as biomarkers and therapeutic targets. Recent discoveries have revealed that lncRNAs act as key signal transduction mediators in cancer signaling pathways by interacting with proteins, RNA, and lipids. Here, we review the mechanisms by which lncRNAs regulate cellular responses to extracellular signals and discuss their clinical potential as diagnostic indicators, stratification markers, and therapeutic targets of combinatorial treatments.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Cai T, Liu Y, Xiao J. Long noncoding RNA MALAT1 knockdown reverses chemoresistance to temozolomide via promoting microRNA-101 in glioblastoma. Cancer Med 2018; 7:1404-1415. [PMID: 29479863 PMCID: PMC5911628 DOI: 10.1002/cam4.1384] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal tumor of the central nervous system with highly infiltrative and resistant to chemotherapy. Temozolomide (TMZ) is widely used as the first-line treatment for the therapy of GBM. However, a considerable percentage inherent or acquired resistance in GBM accounts for many treatment failures of the TMZ chemotherapy. Therefore, a deeper understanding of the molecular characteristics underlying TMZ resistance and the identification of novel therapeutic target is urgent. Here, we show that MALAT1 was significantly upregulated in TMZ-resistant GBM cells. On the other hand, MALAT1 knockdown reduces TMZ resistance of GBM cells both in vitro and in vivo by inhibiting cell proliferation and promoting apoptosis. We also show that miR-101 overexpression reduced TMZ resistance of GBM cells and played an antagonistic role compared with MALAT1. Importantly, we demonstrate that MALAT1 promoted the chemoresistance through suppressing miR-101 signaling pathway via directly binding it in GBM cells. In conclusion, our study indicates that knockdown of MALAT1 reverses chemoresistance to TMZ via promoting miR-101 regulatory network in GBM and thus offers a novel prognostic marker and potential target for GBM TMZ-based chemotherapy.
Collapse
Affiliation(s)
- Tao Cai
- Department of NeurosurgeryThe Third Xiangya HospitalCentral South University138 Tongzipo RoadChangshaHunan 410013China
| | - Yu Liu
- Department of NeurosurgeryThe Third Xiangya HospitalCentral South University138 Tongzipo RoadChangshaHunan 410013China
| | - Jie Xiao
- Department of EmergencyThe Third Xiangya HospitalCentral South University138 Tongzipo RoadChangshaHunan 410013China
| |
Collapse
|
42
|
Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Long non-coding RNAs in osteosarcoma. Oncotarget 2017; 8:20462-20475. [PMID: 28103585 PMCID: PMC5386777 DOI: 10.18632/oncotarget.14726] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) with more than 200 nuleotides, have been explored to participate in various cancer types including osteosarcoma (OS), which is the most common kind of primary bone tumors with high morbidity in infants and adolescents. These oncogenic or tumor suppressive lncRNAs regulate OS pathogenesis, such as cell growth, proliferation, invasion, migration, metastasis and cell apoptosis, serve as independent prognostic biomarkers or play a significant role in multidrug resistance (MDR) in OS cells. In this review, we attempt to dissect the participation of lncRNAs in pathogenesis of OS and their potential clinical values, and also provide an outlook for viable biomarkers and therapeutic targets in OS.
Collapse
Affiliation(s)
- Ruiling Chen
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res 2017; 77:3965-3981. [PMID: 28701486 PMCID: PMC8330958 DOI: 10.1158/0008-5472.can-16-2634] [Citation(s) in RCA: 2123] [Impact Index Per Article: 265.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.
Collapse
Affiliation(s)
- Arunoday Bhan
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Milad Soleimani
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas.
| |
Collapse
|
44
|
Li X, Shen JK, Hornicek FJ, Xiao T, Duan Z. Noncoding RNA in drug resistant sarcoma. Oncotarget 2017; 8:69086-69104. [PMID: 28978183 PMCID: PMC5620323 DOI: 10.18632/oncotarget.19029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Sarcomas are a group of malignant tumors that arise from mesenchymal origin. Despite significant development of multidisciplinary treatments for sarcoma, survival rates have reached a plateau. Chemotherapy has been extensively used for sarcoma treatment; however, the development of drug resistance is a major obstacle limiting the success of many anticancer agents. Sarcoma biology has traditionally focused on genomic and epigenomic deregulation of protein-coding genes to identify the therapeutic potential for reversing drug resistance. New and more creative approaches have found the involvement of noncoding RNAs, including microRNAs and long noncoding RNAs in drug resistant sarcoma. In this review, we discuss the current knowledge of noncoding RNAs characteristics and the regulated genes involved in drug resistant sarcoma, and focus on their therapeutic potential in the future.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| |
Collapse
|
45
|
Zhu KP, Ma XL, Zhang CL. LncRNA ODRUL Contributes to Osteosarcoma Progression through the miR-3182/MMP2 Axis. Mol Ther 2017; 25:2383-2393. [PMID: 28750740 DOI: 10.1016/j.ymthe.2017.06.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/27/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022] Open
Abstract
Recent findings have shown that lncRNA dysregulation is involved in many cancers, including osteosarcoma (OS). In a previous study, we reported a novel lncRNA, ODRUL, that could promote doxorubicin resistance in OS. We now report the function and underlying mechanism of ODRUL in regulating OS progression. We show that ODRUL is upregulated in OS tissues and cell lines and correlates with poor prognosis. ODRUL knockdown significantly inhibits OS cell proliferation, migration, invasion, and tumor growth in vitro and in vivo by decreasing matrix metalloproteinase (MMP) expression. A microarray screen combined with online database analysis showed that miR-3182 is upregulated and MMP2 is downregulated in sh-ODRUL-expressing MG63 cells and that miR-3182 harbors potential binding sites for ODRUL and the 3' UTR of MMP2 mRNA. In addition, miR-3182 expression and function are inversely correlated with ODRUL expression in vitro and in vivo. A luciferase reporter assay demonstrated that ODRUL could directly interact with miR-3182 and upregulate MMP2 expression via its competing endogenous RNA activity on miR-3182 at the posttranscriptional level. Taken together, our study has elucidated the role of oncogenic ODRUL in OS progression and may provide a new target in OS therapy.
Collapse
Affiliation(s)
- Kun-Peng Zhu
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Institute of Bone Tumor, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Xiao-Long Ma
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Institute of Bone Tumor, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Chun-Lin Zhang
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Institute of Bone Tumor, Tongji University, School of Medicine, Shanghai 200072, P.R. China.
| |
Collapse
|
46
|
Ye K, Wang S, Zhang H, Han H, Ma B, Nan W. Long Noncoding RNA GAS5 Suppresses Cell Growth and Epithelial-Mesenchymal Transition in Osteosarcoma by Regulating the miR-221/ARHI Pathway. J Cell Biochem 2017; 118:4772-4781. [PMID: 28519068 DOI: 10.1002/jcb.26145] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022]
Abstract
Dysregulated long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play key roles in the development of human cancers. The lncRNA growth arrest-specific 5 (GAS5) is reported to be a tumor suppressor in multiple cancers. However, the roles of GAS5 and its related miRNAs in osteosarcoma are poorly understood. This study explored the potential functions and mechanisms of GAS5 in the tumorigenesis of osteosarcoma. Here, the expression of GAS5, miR-221 and aplasia Ras homologue member I (ARHI) was determined in osteosarcoma tissues and cells by Real-time PCR (RT-qPCR). The underlying mechanism of GAS5 in osteosarcoma growth was analyzed via MTT, Transwell, RT-qPCR, Western blot, dual-luciferase reporter assay, RNA immunoprecipitation, and xenograft models after GAS5 overexpression. GAS5 and ARHI levels were significantly reduced, while miR-221 increased, both in osteosarcoma tissues and cells. Overexpression of GAS5 suppressed the proliferation, migration, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. GAS5 could directly bind to miR-221 to decrease miR-221 expression and enhance ARHI expression. The effect of GAS5 overexpression on the proliferation, migration and EMT was reversed by miR-221 mimics or ARHI siRNA in osteosarcoma cells. Additionally, GAS5 suppressed tumor volume, Ki-67 and PCNA staining, and EMT process in the development of osteosarcoma in vivo. Taken together, lncRNA GAS5 functions as a competing endogenous RNA for miR-221 to suppress cell growth and EMT in osteosarcoma by regulating the miR-221/ARHI pathway. J. Cell. Biochem. 118: 4772-4781, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kaishan Ye
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Shuanke Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haihong Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Hua Han
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Bing Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wei Nan
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| |
Collapse
|
47
|
Tian X, Zhang H, Zhang B, Zhao J, Li T, Zhao Y. Microarray expression profile of long non-coding RNAs in paclitaxel-resistant human lung adenocarcinoma cells. Oncol Rep 2017; 38:293-300. [DOI: 10.3892/or.2017.5691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/15/2017] [Indexed: 11/05/2022] Open
|
48
|
Kun-Peng Z, Xiao-Long M, Chun-Lin Z. LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget 2017; 8:71881-71893. [PMID: 29069754 PMCID: PMC5641097 DOI: 10.18632/oncotarget.17985] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/07/2017] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) act as crucial regulators in various cancers including osteosarcoma (OS), yet their potential roles and molecular mechanisms in OS chemoresistance remain unclear. In the present study, we investigated the role and potential regulatory mechanism of the most down-regulated expressed lncRNA, FENDRR screened by our previous lncRNA microarray analysis between the paired doxorubicin-resistant and sensitive human osteosarcoma cell lines (MG63/DXR vs MG63). FENDRR expression was down-regulated in the doxorubicin-resistant OS cell lines and tissues and negatively correlated to the poor prognosis of OS patients. Overexpression of FENDRR suppressed doxorubicin-resistance, G2/M phase of cell cycle, and promoted cell apoptosis of osteosarcoma cells in vitro and tumor growth in vivo whereas FENDRR knockdown had the opposite effects. In addition, we found that FENDRR was mainly located in the cytoplasm and could regulate the drug resistance of osteosarcoma cells by negatively affecting posttranscriptional expression of ABCB1 and ABCC1. Together, our study demonstrated that lncRNA FENDRR may act as an inhibitory molecule of doxorubicin-resistance through down-regulating the expression of ABCB1 and ABCC1 genes in osteosarcoma cells. These findings may extend the function of FENDRR in tumor progression and provide a novel target for reversing OS chemoresistance.
Collapse
Affiliation(s)
- Zhu Kun-Peng
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, PR China.,Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Ma Xiao-Long
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, PR China.,Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhang Chun-Lin
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, PR China.,Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| |
Collapse
|
49
|
Min L, Garbutt C, Tu C, Hornicek F, Duan Z. Potentials of Long Noncoding RNAs (LncRNAs) in Sarcoma: From Biomarkers to Therapeutic Targets. Int J Mol Sci 2017; 18:E731. [PMID: 28353666 PMCID: PMC5412317 DOI: 10.3390/ijms18040731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
Sarcoma includes some of the most heterogeneous tumors, which make the diagnosis, prognosis and treatment of these rare yet diverse neoplasms especially challenging. Long noncoding RNAs (lncRNAs) are important regulators of cancer initiation and progression, which implies their potential as neoteric prognostic and diagnostic markers in cancer, including sarcoma. A relationship between lncRNAs and sarcoma pathogenesis and progression is emerging. Recent studies demonstrate that lncRNAs influence sarcoma cell proliferation, metastasis, and drug resistance. Additionally, lncRNA expression profiles are predictive of sarcoma prognosis. In this review, we summarize contemporary advances in the research of lncRNA biogenesis and functions in sarcoma. We also highlight the potential for lncRNAs to become innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma.
Collapse
Affiliation(s)
- Li Min
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, Sichuan, China.
| | - Cassandra Garbutt
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, Sichuan, China.
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
50
|
Zhang CL, Zhu KP, Ma XL. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett 2017; 396:66-75. [PMID: 28323030 DOI: 10.1016/j.canlet.2017.03.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/18/2022]
Abstract
Recent efforts have revealed that numerous natural antisense lncRNAs play a crucial role in the regulation of cancer biology. Here, based on our previous study, we further identified that the lncRNA FOXC2-AS1 and its antisense transcript FOXC2 are positively up-regulated in doxorubicin-resistant osteosarcoma cell lines and tissues, correlate with poor prognosis and promote doxorubicin resistance in osteosarcoma cells in vitro and in vivo. In addition, FOXC2-AS1 and FOXC2 are mainly located in the cytoplasm and form an RNA-RNA double-stranded structure in the overlapping region, which is necessary for FOXC2-AS1 to regulate the expression of FOXC2 at both the transcription and post-transcription levels. In addition, transcription factor FOXC2 also contributes to doxorubicin resistance through inducing the expression of the classical multi-drug resistance-related ABCB1 gene similar to FOXC2-AS1. Thus, we concluded that the lncRNA FOXC2-AS1 may promote doxorubicin resistance in OS by increasing the expression of transcription factor FOXC2, further facilitating ABCB1 expression. These findings demonstrate the potential underlying mechanism of FOXC2-AS1 in the regulation of doxorubicin resistance in OS and possibly provide a novel reversing target.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| | - Kun-Peng Zhu
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiao-Long Ma
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| |
Collapse
|