1
|
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi H, Lu SS, Feng J, Feng XP, Wu D, Wen Q, Zhou JH, Yuan L, Zhuang W, Xiao ZQ. ANXA1 Promotes Tumor Immune Evasion by Binding PARP1 and Upregulating Stat3-Induced Expression of PD-L1 in Multiple Cancers. Cancer Immunol Res 2023; 11:1367-1383. [PMID: 37566399 DOI: 10.1158/2326-6066.cir-22-0896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The deregulation of Annexin A1 (ANXA1), a regulator of inflammation and immunity, leads to cancer growth and metastasis. However, whether ANXA1 is involved in cancer immunosuppression is still unclear. Here, we report that ANXA1 knockdown (i) dramatically downregulates programmed cell death-ligand 1 (PD-L1) expression in breast cancer, lung cancer, and melanoma cells; (ii) promotes T cell-mediated killing of cancer cells in vitro; and (iii) inhibits cancer immune escape in immune-competent mice via downregulating PD-L1 expression and increasing the number and killing activity of CD8+ T cells. Mechanistically, ANXA1 functioned as a sponge molecule for interaction of PARP1 and Stat3. Specifically, binding of ANXA1 to PARP1 decreased PARP1's binding to Stat3, which reduced poly(ADP-ribosyl)ation and dephosphorylation of Stat3 and thus, increased Stat3's transcriptional activity, leading to transcriptionally upregulated expression of PD-L1 in multiple cancer cells. In clinical samples, expression of ANXA1 and PD-L1 was significantly higher in breast cancer, non-small cell lung cancer, and skin cutaneous melanoma compared with corresponding normal tissues and positively correlated in cancer tissues. Moreover, using both ANXA1 and PD-L1 proteins for predicting efficacy of anti-PD-1 immunotherapy and patient prognosis was superior to using individual proteins. Our data suggest that ANXA1 promotes cancer immune escape via binding PARP1 and upregulating Stat3-induced expression of PD-L1, that ANXA1 is a potential new target for cancer immunotherapy, and combination of ANXA1 and PD-L1 expression is a potential marker for predicting efficacy of anti-PD-1 immunotherapy in multiple cancers.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhuang
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Wang L, Qin X, Zhang Y, Xue S, Song X. The prognostic predictive value of systemic immune index and systemic inflammatory response index in nasopharyngeal carcinoma: A systematic review and meta-analysis. Front Oncol 2023; 13:1006233. [PMID: 36816962 PMCID: PMC9936064 DOI: 10.3389/fonc.2023.1006233] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Objective To study the predictive value of systemic immune index (SII) and systemic inflammatory response index (SIRI) in the prognosis of patients with nasopharyngeal carcinoma. Methods Two researchers independently searched PubMed, Cochrane, Embase, and Web of Science databases (until March 18, 2022) for all studies on SII, SIRI, and prognosis in patients with nasopharyngeal carcinoma. Quality assessment of included studies was assessed using the Newcastle-Ottawa Scale (NOS). In addition, a bivariate mixed-effects model was used to explore predictive value. Results A total of 9 studies that satisfied the requirements were included, involving, 3187 patients with nasopharyngeal carcinoma. The results of the meta-analysis showed that SII could be an independent predictor of OS (HR=1.78, 95%CI [1.44-2.20], Z=5.28, P<0.05), and SII could also be an independent predictor of PFS (HR=1.66, 95%CI [1.36-2.03], Z=4.94, P<0.05). In addition, SIRI could also serve as an independent predictor of OS (HR=2.88, 95%CI [1.97-4.19], Z=5.51, P<0.05). The ROC area was 0.63, the sensitivity was 0.68 (95%CI [0.55-0.78]), and the specificity was 0.55 (95%CI [0.47-0.62]), all of which indicated that SII had a certain predictive value for OS. Conclusion SII and SIRI can be used as independent predictors to predict the prognosis and survival status of patients with nasopharyngeal carcinoma and have certain predictive accuracy. Therefore, SII and SIRI should be considered in studies that update survival risk assessment systems. Systematic Review Registration https://www.ytyhdyy.com/, identifier PROSPERO (CRD42022319678).
Collapse
Affiliation(s)
- Li Wang
- Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Yantai Shandong, China,*Correspondence: Li Wang, ; Xicheng Song,
| | - Xianfei Qin
- School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Yu Zhang
- Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Yantai Shandong, China
| | - Shouyu Xue
- Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Yantai Shandong, China
| | - Xicheng Song
- Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Yantai Shandong, China,*Correspondence: Li Wang, ; Xicheng Song,
| |
Collapse
|
3
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
4
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
5
|
Lu S, Dai M, Hu X, Yi H, Zhang Y. A new survival model based on ion channel genes for prognostic prediction in hepatocellular carcinoma. Genomics 2020; 113:171-182. [PMID: 33340691 DOI: 10.1016/j.ygeno.2020.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Accumulating studies revealed the vital role of ion channels in cancers, but the prognosis role of ion channels in hepatocellular carcinoma (HCC) remains limited. Here, we developed and validated an ion channel signature for prognostic prediction of HCC patients. In total, 35 differential expressed ion channel genes (DEChannelGs) were identified in HCC and a novel ion channel risk model was established for HCC prognosis prediction using the TCGA cohort, which was validated using the ICGC cohort. Moreover, this risk model was an independent prognostic factor and was associated with the immune microenvironment in HCC. Finally, the mRNA and protein levels of ANO10 and CLCN2 were prominently up-regulated and were related to the poor prognosis of HCC patients. Taken together, these results indicated a novel ion channel risk model as a prognostic biomarker for HCC patients and provided further insight into its immunoregulatory mechanism in HCC progression.
Collapse
Affiliation(s)
- Shanshan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minhui Dai
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Xingwang Hu
- Department of Infectious Diseases/ Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 41008, China.
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
6
|
Feng J, Lu SS, Xiao T, Huang W, Yi H, Zhu W, Fan S, Feng XP, Li JY, Yu ZZ, Gao S, Nie GH, Tang YY, Xiao ZQ. ANXA1 Binds and Stabilizes EphA2 to Promote Nasopharyngeal Carcinoma Growth and Metastasis. Cancer Res 2020; 80:4386-4398. [PMID: 32737118 DOI: 10.1158/0008-5472.can-20-0560] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.
Collapse
Affiliation(s)
- Juan Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Hui Nie
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
8
|
Zhang Q, Bing Z, Tian J, Wang X, Liu R, Li Y, Kong Y, Yang Y. Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer. Oncol Lett 2019; 17:5377-5388. [PMID: 31186755 PMCID: PMC6507505 DOI: 10.3892/ol.2019.10240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/08/2019] [Indexed: 01/17/2023] Open
Abstract
Oesophageal cancer is a serious disease worldwide. In China, the incidence of esophageal cancer was reported to be ~478,000 in 2015. In the same year, the incidence of esophageal cancer in the United States was ~16,910. Radiotherapy serves as an important tool in the treatment of oesophageal cancer, and although radiation therapy has progressed over time, the prognosis of the majority of patients with oesophageal cancer remains poor. Additionally, the sensitivity of patients with oesophageal cancer to radiotherapy and chemotherapy is not yet clear. Although there are a number of studies on the radiosensitivity of oesophageal cancer cell lines, the vastly different results from different cell lines make them unreliable to use as a guide in clinical practice. Therefore, a common radiosensitive gene signature may provide more reliable results, and using different combinations of common gene signatures to predict the outcome of patients with oesophageal cancer may generate a unique gene signature in oesophageal cancer. In the present study, the radiosensitive index and prognostic index were calculated to predict clinical outcomes. The prognostic index of a 41-gene signature combination is the largest combination of gene signatures used for classifying oesophageal cancer patients into radiosensitive (RS) and radioresistance (RR) groups, to the best of our knowledge, and this gene signature was more effective in patients classified as having Stage III oesophageal cancer. Furthermore, four genes (carbonyl reductase 1, serine/threonine kinase PAK2, ras-related protein Rab 13 and twinfilin-1) may be sufficient to classify patients into either RS or RR. Subsequent to gene enrichment analysis, the cell communication pathway was significantly different between RS and RR groups in oesophageal cancer. These results may provide useful insights in improving radiotherapy strategies in clinical decisions.
Collapse
Affiliation(s)
- Qiuning Zhang
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University, Lanzhou, Gansu 730050, P.R. China.,Department of Computational Physics, Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University, Lanzhou, Gansu 730050, P.R. China.,Department of Computational Physics, Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Xiaohu Wang
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Ruifeng Liu
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yi Li
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yarong Kong
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Yang
- The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
9
|
Zhang L, Liang Y, Li S, Zeng F, Meng Y, Chen Z, Liu S, Tao Y, Yu F. The interplay of circulating tumor DNA and chromatin modification, therapeutic resistance, and metastasis. Mol Cancer 2019; 18:36. [PMID: 30849971 PMCID: PMC6408771 DOI: 10.1186/s12943-019-0989-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Peripheral circulating free DNA (cfDNA) is DNA that is detected in plasma or serum fluid with a cell-free status. For cancer patients, cfDNA not only originates from apoptotic cells but also from necrotic tumor cells and disseminated tumor cells that have escaped into the blood during epithelial-mesenchymal transition. Additionally, cfDNA derived from tumors, also known as circulating tumor DNA (ctDNA), carries tumor-associated genetic and epigenetic changes in cancer patients, which makes ctDNA a potential biomarker for the early diagnosis of tumors, monitory and therapeutic evaluations, and prognostic assessments, among others, for various kinds of cancer. Moreover, analyses of cfDNA chromatin modifications can reflect the heterogeneity of tumors and have potential for predicting tumor drug resistance.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yiyi Liang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shifu Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Fanyuan Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yongan Meng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ziwei Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China.
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
10
|
Xu Y, Shao Z, Tang T, Liu G, Yao Y, Wang J, Zhang L. A dosimetric study on radiation-induced hypothyroidism following intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma. Oncol Lett 2018; 16:6126-6132. [PMID: 30405757 DOI: 10.3892/ol.2018.9332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
The objective of the present study was to investigate the association between thyroid gland-dosimetric parameters and hypothyroidism induced by intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma (NPC). A total of 52 patients with NPC treated in the Department of Radiation Oncology of The Affiliated Hospital of Xuzhou Medical University, from May 2008 to December 2016 were retrospectively enrolled in the present study and divided into two groups based on thyroid function: The euthyroid and hypothyroid groups. The association between hypothyroidism and clinical or dosimetric parameters were analyzed. Females had a significantly increased probability of suffering from radiation-induced hypothyroidism (RIHT), compared with males (P=0.010). The occurrence of RIHT was significantly negatively associated with thyroid volume prior to radiotherapy (P=0.048). Furthermore, the mean dose (Dmean) and V50 in the hypothyroidism group were significantly increased, compared with the euthyroidism group (P=0.017 and P=0.023, respectively). During the treatment optimization period, dose constraints associated with the thyroid gland demonstrated a significantly protective effect on thyroid function compared with the unconstrained group (P=0.034). According to the receiver operating characteristic curves, the threshold value was 5,160 cGy for Dmean and 54.5% for V50. The 3-year cumulative incidence of RIHT was 67.8% when the Dmean value was >5,160 cGy and 44.6% when the Dmean was <5,160 cGy (log rank test, P=0.036). Furthermore, the 3-year cumulative incidence was 66.1% when the V50 was >54.5%, and 29.9% when the V50 was <54.5% (log rank test, P=0.025). In conclusion, RIHT is associated with radiation dose, particularly with Dmean and V50 of the thyroid gland. Dose constraints associated with the thyroid gland significantly reduced the incidence of hypothyroidism compared with the unconstrained group.
Collapse
Affiliation(s)
- Yumei Xu
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China.,Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhiying Shao
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Tianyou Tang
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Guihong Liu
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuanhu Yao
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Jianshe Wang
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Longzhen Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
11
|
Feng X, Lv W, Wang S, He Q. miR‑495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells. Oncol Rep 2018; 40:1223-1232. [PMID: 30015969 PMCID: PMC6072388 DOI: 10.3892/or.2018.6538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) was revealed to be associated with the radioresistance of nasopharyngeal carcinoma (NPC) in our previous study. GRP78 is a highly expressed cell surface protein, and holds great promise as a cancer specific target. Its expression may be impacted by the regulation of miRNAs, which may be involved in the radioresistance of NPC. A better understanding of the mechanisms of radioresistance may generate new targets of therapy for NPC patients. The present study was designed to investigate the effect of microRNA targeting GRP78 on the radiosensitivity of NPC. First, we used miRWalk software to predict miRNAs that may interact with GRP78. Subsequently, analysis of miR-495 and GRP78 expression was performed in the primary tissues of 92 NPC tissues and cell lines by immunohistochemistry and real-time PCR and the results revealed that miR-495 expression was lower in radioresistant NPC tissues in comparison to chronic rhinitis tissues, and also lower in radioresistant 5-8F cells (5-8F-IR) in comparison to its parental 5-8F cells. Notably, we observed an inverse association between the expression miR-495 and GRP78. Our bioinformatics analysis led to the identification of miR-495 as the optimal miRNA interacting with GRP78 mRNA. Furthermore, miR-495 targeting the 3′untranslated region (UTR) of GRP78 was detected by a Dual-Glo Luciferase Assay system. Finally, we observed that miR-495 inhibition led to a significant increase in the radioresistance of 5-8F cells and higher GRP78 expression, which may be involved in epithelial-mesenchymal transition (EMT) phenotype. miR-495 targeted the 3′UTR of GRP78 and contributed to the efficacy of radiation therapy in NPC.
Collapse
Affiliation(s)
- Xueping Feng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wuwu Lv
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Shuanglian Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Qian He
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
12
|
He Y, Jing Y, Wei F, Tang Y, Yang L, Luo J, Yang P, Ni Q, Pang J, Liao Q, Xiong F, Guo C, Xiang B, Li X, Zhou M, Li Y, Xiong W, Zeng Z, Li G. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:235. [PMID: 29445147 PMCID: PMC5833381 DOI: 10.1038/s41419-018-0265-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
The long non-coding RNA, plasmacytoma variant translocation 1 (PVT1), is highly expressed in a variety of tumors, and is believed to be a potential oncogene. However, the role and mechanism of action of PVT1 in the carcinogenesis and progression of nasopharyngeal carcinomas (NPCs) remains unclear. In this study, for the first time, we have discovered that PVT1 shows higher expression in NPCs than in normal nasopharyngeal epithelial tissue, and patients with NPCs who show higher expression of PVT1 have worse progression-free and overall survivals. Additionally, we observed that the proliferation of NPC cells decreased, and their rate of apoptosis increased; these results indicated that the knockdown of PVT1 expression in the NPC cells induced radiosensitivity. Further, we have shown that the knockdown of PVT1 expression can induce apoptosis in the NPC cells by influencing the DNA damage repair pathway after radiotherapy. In general, our study shows that PVT1 may be a novel biomarker for prognosis and a new target for the treatment of NPCs. Additionally, targeting PVT1 may be a potential strategy for the clinical management of NPC and for the improvement of the curative effect of radiation in NPCs.
Collapse
MESH Headings
- Apoptosis/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/therapy
- Caspases/genetics
- Caspases/metabolism
- Cell Line, Tumor
- Cell Proliferation
- DNA Repair
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Databases, Genetic
- Follow-Up Studies
- Gamma Rays/therapeutic use
- Gene Expression Regulation, Neoplastic
- Humans
- Nasopharyngeal Carcinoma/diagnosis
- Nasopharyngeal Carcinoma/genetics
- Nasopharyngeal Carcinoma/mortality
- Nasopharyngeal Carcinoma/therapy
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Prognosis
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Radiation Tolerance/genetics
- Signal Transduction
- Survival Analysis
Collapse
Affiliation(s)
- Yi He
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhou Jing
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pei Yang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianxi Ni
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinmeng Pang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Wang L, Guo Y, Xu J, Chen Z, Jiang X, Zhang L, Huang S, He X, Zhang Y. Clinical Analysis of Recurrence Patterns in Patients With Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy. Ann Otol Rhinol Laryngol 2017; 126:789-797. [PMID: 29025277 DOI: 10.1177/0003489417734229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To evaluate the characteristics and risk factors for locoregional recurrence in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). METHODS The clinical diagnosis and treatment data of 195 patients with NPC treated with IMRT from March 2005 to May 2010 (including 9, 24, 70, and 92 cases of stage I, II, III, and IV disease, respectively, according to the 7th edition American Joint Committee on Cancer staging criteria) were retrospectively analyzed. The Kaplan-Meier method was used for survival analysis, and logistic regression was used to conduct univariate and multivariate analyses. RESULTS The 5-year recurrence rate was 10.8%, and the 5-year local and regional recurrence rates were 8.7% and 3.4%, respectively. Multivariate analysis showed that the short axis of the cervical lymph nodes (≥3 cm) was an influencing factor for regional lymph node recurrence after IMRT. CONCLUSION In-field and high-dose region failures were the main patterns associated with local-regional recurrence, and nasopharyngeal recurrence was most commonly detected. Newly diagnosed patients with large cervical lymph nodes (short diameter ≥3 cm) should be carefully followed up considering regional lymph node recurrence.
Collapse
Affiliation(s)
- Lijun Wang
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Yesong Guo
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Jianhua Xu
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Zhenzhang Chen
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Xuesong Jiang
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Lanfang Zhang
- 2 Imaging Department, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Shengfu Huang
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Xia He
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| | - Yiqin Zhang
- 1 Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
14
|
Wang C, Su Z, Hou H, Li D, Pan Z, Tian W, Mo C. Inhibition of Anaphase-Promoting Complex by Silence APC/C Cdh1 to Enhance Radiosensitivity of Nasopharyngeal Carcinoma Cells. J Cell Biochem 2017; 118:3150-3157. [PMID: 28004426 DOI: 10.1002/jcb.25854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 11/06/2022]
Abstract
The aim of this study was to investigate the possibility of APC/CCdh1 as a potential therapeutic target in the radiosensitivity of nasopharyngeal carcinoma (NPC) cell CNE-1, and explain the role of APC subunits after silence of Cdh1 combined with radiotherapy. Transfection with Cdh1 shRNA significantly increased the radiosensitivity of CNE-1 cells and the radiation enhancement ratio (RER) of sh-Cdh1 cells was 1.76. Knockdown of Cdh1 in CNE-1 cells increased irradiation induced apoptosis and G2/M phase cell cycle arrest. The levels of CDC20 and CylinB1 increased and the levels of Ku70 and APC3 decreased after irradiation. APC/CCdh1 is involved in regulation of radiosensitivity in human NPC CNE-1 cells. Our study may provide a promising therapeutic strategy for NPC by targeting Cdh1. J. Cell. Biochem. 118: 3150-3157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunmiao Wang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhengying Su
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Huaxin Hou
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Danrong Li
- Department of the Basic Researcher, Guangxi Institute for Cancer Research, Hedi Road No. 71, Nanning 530021, China
| | - Zhiyu Pan
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wei Tian
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunyan Mo
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
15
|
Qu C, Zhao Y, Feng G, Chen C, Tao Y, Zhou S, Liu S, Chang H, Zeng M, Xia Y. RPA3 is a potential marker of prognosis and radioresistance for nasopharyngeal carcinoma. J Cell Mol Med 2017; 21:2872-2883. [PMID: 28557284 PMCID: PMC5661258 DOI: 10.1111/jcmm.13200] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Radioresistance-induced residual and recurrent tumours are the main cause of treatment failure in nasopharyngeal carcinoma (NPC). Thus, the mechanisms of NPC radioresistance and predictive markers of NPC prognosis and radioresistance need to be investigated and identified. In this study, we identified RPA3 as a candidate radioresistance marker using RNA-seq of NPC samples. In vitro studies further confirmed that RPA3 affected the radiosensitivity of NPC cells. Specifically, the overexpression of RPA3 enhanced radioresistance and the capacity for DNA repair of NPC cells, whereas inhibiting RPA3 expression sensitized NPC cells to irradiation and decreased the DNA repair capacity. Furthermore, the overexpression of RPA3 enhanced RAD51 foci formation in NPC cells after irradiation. Immunohistochemical assays in 104 NPC specimens and 21 normal epithelium specimens indicated that RPA3 was significantly up-regulated in NPC tissues, and a log-rank test suggested that in patients with NPC, high RPA3 expression was associated with shorter overall survival (OS) and a higher recurrence rate compared with low expression (5-year OS rates: 67.2% versus 86.2%; 5-year recurrence rates: 14.8% versus 2.3%). Moreover, TCGA data also indicated that high RPA3 expression correlated with poor OS and a high recurrence rate in patients with head and neck squamous cell carcinoma (HNSC) after radiotherapy. Taken together, the results of our study demonstrated that RPA3 regulated the radiosensitivity and DNA repair capacity of NPC cells. Thus, RPA3 may serve as a new predictive biomarker for NPC prognosis and radioresistance to help guide the diagnosis and individualized treatment of patients with NPC.
Collapse
Affiliation(s)
- Chen Qu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yiying Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yalan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Shu Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Songran Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Hui Chang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yunfei Xia
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| |
Collapse
|
16
|
Tang M, Liu RY, Zhou C, Yuan MZ, Wu DM, Yuan Z, Zhang P, Lang JY. EMP2 re-expression inhibits growth and enhances radiosensitivity in nasopharyngeal carcinoma. Tumour Biol 2017; 39:1010428317695972. [PMID: 28347228 DOI: 10.1177/1010428317695972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although radiation therapy is the primary treatment for nasopharyngeal carcinoma, radioresistance remains a major obstacle to successful treatment in many cases, and the exact underlying molecular mechanisms are still ill-defined. EMP2, epithelial membrane protein-2, was a recently identified potential oncogene involved in multiple biological processes including cell migration and cell proliferation. This study was to explore the potential relationship between EMP2 expression, nasopharyngeal carcinoma genesis, and radioresistance. EMP2 expression status in 98 nasopharyngeal carcinoma clinical samples was examined by immunohistochemical staining. As a result, most of the nasopharyngeal carcinoma tumor samples were weakly or negatively stained, while paired adjacent normal tissues were moderately or strongly stained. Moreover, patients with higher expression of EMP2 had significant longer survival times. EMP2 re-expression suppresses cell growth, induces S-phase cell cycle arrest, and promotes radiosensitivity and apoptosis in nasopharyngeal carcinoma cells. These results support that loss of EMP2 is common, and its re-expression may serve as an approach to enhance radiation sensitivity in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Mei Tang
- 1 Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- 2 Laboratory of Tumor Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ru-Yan Liu
- 3 Department of oncology, FuLing Central Hospital, Chongqing, China
| | - Cong Zhou
- 2 Laboratory of Tumor Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Meng-Zhen Yuan
- 1 Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Dong-Ming Wu
- 2 Laboratory of Tumor Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhu Yuan
- 2 Laboratory of Tumor Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Peng Zhang
- 1 Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jin-Yi Lang
- 1 Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Li XH, Chang H, Xu BQ, Tao YL, Gao J, Chen C, Qu C, Zhou S, Liu SR, Wang XH, Zhang WW, Yang X, Zhou SL, Xia YF. An inflammatory biomarker-based nomogram to predict prognosis of patients with nasopharyngeal carcinoma: an analysis of a prospective study. Cancer Med 2016; 6:310-319. [PMID: 27860387 PMCID: PMC5269708 DOI: 10.1002/cam4.947] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation plays an important role in tumor progression. The aim of this analysis was to evaluate whether inflammatory biomarkers such as the Glasgow prognostic score (GPS), the neutrophil‐lymphocyte ratio (NLR), the platelet‐lymphocyte ratio (PLR), and the lymphocyte‐monocyte ratio (LMR) could predict the prognosis of nasopharyngeal carcinoma (NPC). In this analysis, pretreatment GPS, NLR, PLR, LMR of 388 patients who were diagnosed as nonmetastatic NPC and recruited prospectively in the 863 Program No. 2006AA02Z4B4 were assessed. Of those, the 249 cases enrolled between December 27th 2006 and July 31st 2011 were defined as the development set. The rest 139 cases enrolled between August 1st 2011 and July 31st 2013 were defined as the validation set. The variables above were analyzed in the development set, together with age, gender, Karnofsky performance score, T stage, and N stage, with respect to their impact on the disease‐specific survival (DSS) through a univariate analysis. The candidate prognostic factors then underwent a multivariate analysis. A nomogram was established to predict the DSS, by involving the independent prognostic factors. Its predction capacity was evaluated through calculating Harrell's concordance index (C‐index) in the validation set. After multivariate analysis for the development set, age (≤50 vs. >50 years old), T stage (T1–2 vs. T3–4), N stage (N0–1 vs. N2–3) and pretreatment GPS (0 vs. 1–2), NLR (≤2.5 vs. >2.5), LMR (≤2.35 vs. >2.35) were independent prognostic factors of DSS (P values were 0.002, 0.008, <0.001, 0.004, 0.018, and 0.004, respectively). A nomogram was established by involving all the factors above. Its C‐index for predicting the DSS of the validation set was 0.734 (standard error 0.056). Pretreatment GPS, NLR, and LMR were independent prognostic factors of NPC. The nomogram based on them could be used to predict the DSS of NPC patients.
Collapse
Affiliation(s)
- Xiao-Hui Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China.,Department of Oncology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, Guangdong, China
| | - Hui Chang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Bing-Qing Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Ya-Lan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Jin Gao
- Department of Radiation Oncology, Anhui Province Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Chen Qu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Shu Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Song-Ran Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiao-Hui Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Wen-Wen Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Si-Lang Zhou
- Department of Oncology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, Guangdong, China
| | - Yun-Fei Xia
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|