1
|
Orssatto LBR, Borg DN, Pendrith L, Blazevich AJ, Shield AJ, Trajano GS. DO MOTONEURON DISCHARGE RATES SLOW WITH AGING? A SYSTEMATIC REVIEW AND META-ANALYSIS. Mech Ageing Dev 2022; 203:111647. [PMID: 35218849 DOI: 10.1016/j.mad.2022.111647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Nervous system maladaptation is linked to the loss of maximal strength and motor control with aging. Motor unit discharge rates are a critical determinant of force production; thus, lower discharge rates could be a mechanism underpinning maximal strength and motor control losses during aging. This meta-analysis summarized the findings of studies comparing motor unit discharge rates between young and older adults, and examined the effects of the selected muscle and contraction intensity on the magnitude of discharge rates difference between these two groups. Estimates from 29 studies, across a range of muscles and contraction intensities, were combined in a multilevel meta-analysis, to investigate whether discharge rates differed between young and older adults. Motor unit discharge rates were higher in younger than older adults, with a pooled standardized mean difference (SMD) of 0.66 (95%CI= 0.29-1.04). Contraction intensity had a significant effect on the pooled SMD, with a 1% increase in intensity associated with a 0.009 (95%CI= 0.003-0.015) change in the pooled SMD. These findings suggest that reductions in motor unit discharge rates, especially at higher contraction intensities, may be an important mechanism underpinning age-related losses in maximal force production.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.
| | - David N Borg
- Griffith University, Menzies Health Institute Queensland, The Hopkins Centre, Brisbane, Australia
| | - Linda Pendrith
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
2
|
Orssatto LBR, Borg DN, Blazevich AJ, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motoneuron excitability is reduced in soleus and tibialis anterior of older adults. GeroScience 2021; 43:2719-2735. [PMID: 34716899 PMCID: PMC8556797 DOI: 10.1007/s11357-021-00478-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related deterioration within both motoneuron and monoaminergic systems should theoretically reduce neuromodulation by weakening motoneuronal persistent inward current (PIC) amplitude. However, this assumption remains untested. Surface electromyographic signals were collected using two 32-channel electrode matrices placed on soleus and tibialis anterior of 25 older adults (70 ± 4 years) and 17 young adults (29 ± 5 years) to investigate motor unit discharge behaviors. Participants performed triangular-shaped plantar and dorsiflexion contractions to 20% of maximum torque at a rise-decline rate of 2%/s of each participant's maximal torque. Pairwise and composite paired-motor unit analyses were adopted to calculate delta frequency (ΔF), which has been used to differentiate between the effects of synaptic excitation and intrinsic motoneuronal properties and is assumed to be proportional to PIC amplitude. Soleus and tibialis anterior motor units in older adults had lower ΔFs calculated with either the pairwise [-0.99 and -1.46 pps; -35.4 and -33.5%, respectively] or composite (-1.18 and -2.28 pps; -32.1 and -45.2%, respectively) methods. Their motor units also had lower peak discharge rates (-2.14 and -2.03 pps; -19.7 and -13.9%, respectively) and recruitment thresholds (-1.50 and -2.06% of maximum, respectively) than young adults. These results demonstrate reduced intrinsic motoneuron excitability during low-force contractions in older adults, likely mediated by decreases in the amplitude of persistent inward currents. Our findings might be explained by deterioration in the motoneuron or monoaminergic systems and could contribute to the decline in motor function during aging; these assumptions should be explicitly tested in future investigations.
Collapse
Affiliation(s)
- Lucas B. R. Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - David N. Borg
- Menzies Health Institute Queensland, The Hopkins Centre, Griffith University, Brisbane, Australia
| | | | - Raphael L. Sakugawa
- Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Anthony J. Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S. Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
3
|
Orssatto LBDR, Wiest MJ, Diefenthaeler F. Neural and musculotendinous mechanisms underpinning age-related force reductions. Mech Ageing Dev 2018; 175:17-23. [PMID: 29997056 DOI: 10.1016/j.mad.2018.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Ageing leads to substantial force production capacity reductions, which is an indicator of frailty and disability, and a mortality predictor in elders. Understanding the age-dependent neuromuscular mechanisms underlying force reductions can optimize healthcare professionals' exercise protocol choices for patients and allows researchers to investigate new interventions to mitigate these reductions. Our primary goal was to provide an updated review about the main neural and musculotendinous mechanisms underpinning age-related reductions in force capacity. Our secondary goal was to summarize how aerobic and strength training can lessen these age-related reductions. This review suggests that several steps in the force production pathway, from cortical to muscular mechanisms, are negatively affected by ageing. However, combining aerobic and strength training can attenuate these effects. Strength training (i.e. moderate to high- intensity, progressive volume, accentuated eccentric loading and fast concentric contraction velocity) can increase overall force production capacity by producing beneficial neural and musculotendinous adaptations. Additionally, aerobic training (i.e. moderate and high intensities) plays an essential role in preserving the structure and function of the neuromuscular system.
Collapse
Affiliation(s)
- Lucas Bet da Rosa Orssatto
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Matheus Joner Wiest
- Toronto Rehabilitation Institute - UHN. Neural Engineering & Therapeutic Team, Toronto, Ontario, Canada
| | - Fernando Diefenthaeler
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
4
|
McKinnon NB, Connelly DM, Rice CL, Hunter SW, Doherty TJ. Neuromuscular contributions to the age-related reduction in muscle power: Mechanisms and potential role of high velocity power training. Ageing Res Rev 2017; 35:147-154. [PMID: 27697547 DOI: 10.1016/j.arr.2016.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/15/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Abstract
Although much of the literature on neuromuscular changes with aging has focused on loss of muscle mass and isometric strength, deficits in muscle power are more pronounced with aging and may be a more sensitive measure of neuromuscular degeneration. This review aims to identify the adaptations to the neuromuscular system with aging, with specific emphasis on changes that result in decreased muscle power. We discuss how these changes in neuromuscular performance can affect mobility, and ultimately contribute to an increased risk for falls in older adults. Finally, we evaluate the literature regarding high-velocity muscle power training (PT), and its potential advantages over conventional strength training for improving functional performance and mitigating fall risk in older adults.
Collapse
|
5
|
McKinnon NB, Montero-Odasso M, Doherty TJ. Motor unit loss is accompanied by decreased peak muscle power in the lower limb of older adults. Exp Gerontol 2015; 70:111-8. [PMID: 26190479 DOI: 10.1016/j.exger.2015.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022]
Abstract
This study investigated the relationship between motor unit (MU) properties and the isometric strength and power of two lower limb muscles in healthy young and older adults. Twelve older adults (6 men, mean age, 77 ± 5 years) and twelve young adults (6 men, mean age, 24 ± 3 years) were studied. MU properties of the tibialis anterior (TA) and vastus medialis (VM) muscles were determined electrophysiologically using decomposition-enhanced spike-triggered averaging (DE-STA). Motor unit number estimates (MUNEs) of the TA were significantly reduced (p<0.05) in older adults (102 ± 76) compared to young adults (234 ± 109), primarily as a result of significantly larger surface-detected motor unit potentials (S-MUPs) in older adults (63 ± 29 μV) compared to young adults (27 ± 14 μV). Although VM S-MUP values were larger in older adults (60 ± 31 μV) compared to young (48 ± 42 μV), the difference was not significant. Maximal isometric strength was significantly larger in both the TA and knee extensors of young adults (TA: 0.56 Nm/kg, KE: 2.2 Nm/kg) compared to old (TA: 0.4 Nm/kg, KE: 1.3 Nm/kg). Similar reductions in peak muscle power were observed between young (TA: 33 W, KE: 35 7 W) and old adults (TA: 26 W, KE: 224 W). The greatest deficit between young and old subjects in peak power output occurred at 20% MVC for the TA and 40% MVC for the knee extensors. Results from this study indicate that there are changes in MU properties with age, and that this effect may be greater in the more distal TA muscle. Further, this study demonstrates that muscle power may be a sensitive marker of changes in neuromuscular function with aging.
Collapse
Affiliation(s)
- Neal B McKinnon
- School of Health and Rehabilitation Sciences, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Manuel Montero-Odasso
- Gait and Brain Lab, Parkwood Hospital, Lawson Health Research Institute, Canada; Division of Geriatric Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy J Doherty
- School of Health and Rehabilitation Sciences, Faculty of Health Sciences, Western University, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
6
|
Hourigan ML, McKinnon NB, Johnson M, Rice CL, Stashuk DW, Doherty TJ. Increased motor unit potential shape variability across consecutive motor unit discharges in the tibialis anterior and vastus medialis muscles of healthy older subjects. Clin Neurophysiol 2015; 126:2381-9. [PMID: 25727901 DOI: 10.1016/j.clinph.2015.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study the potential utility of using near fiber (NF) jiggle as an assessment of neuromuscular transmission stability in healthy older subjects using decomposition-based quantitative electromyography (DQEMG). METHODS The tibialis anterior (TA) and vastus medialis (VM) muscles were tested in 9 older men (77 ± 5 years) and 9 young male control subjects (23 ± 0.3 years). Simultaneous surface and needle-detected electromyographic (EMG) signals were collected during voluntary contractions, and then analyzed using DQEMG. Motor unit potential (MUP) and NF MUP parameters were analyzed. RESULTS NF jiggle was significantly increased for both the TA and VM in the old age group relative to the younger controls (P<0.05). NF jiggle was significantly higher in the TA compared to VM (P<0.05). For TA, NF jiggle was negatively correlated with MUNE, and positively correlated with S-MUP amplitude, NF count, MUP duration, MUP peak-to-peak voltage, and MUP area (P<0.05). For VM, NF jiggle was positively correlated with NF count and MUP area (P<0.05), and no significant correlations were found between NF jiggle and S-MUP amplitude, MUP duration, or MUP peak-to-peak voltage (MUNE was not calculated for VM, so no correlation could be made). CONCLUSIONS Healthy aging is associated with neuromuscular transmission instability (increased NF jiggle) and MU remodeling, which can be measured using DQEMG. SIGNIFICANCE NF jiggle derived from DQEMG can be a useful method of identifying neuromuscular dysfunction at various stages of MU remodeling and aging.
Collapse
Affiliation(s)
- Maddison L Hourigan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Neal B McKinnon
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Marjorie Johnson
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Timothy J Doherty
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
7
|
Tresch UA, Perreault EJ, Honeycutt CF. Startle evoked movement is delayed in older adults: implications for brainstem processing in the elderly. Physiol Rep 2014; 2:2/6/e12025. [PMID: 24907294 PMCID: PMC4208637 DOI: 10.14814/phy2.12025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Little attention has been given to how age affects the neural processing of movement within the brainstem. Since the brainstem plays a critical role in motor control throughout the whole body, having a clear understanding of deficits in brainstem function could provide important insights into movement deficits in older adults. A unique property of the startle reflex is its ability to involuntarily elicit planned movements, a phenomenon referred to as startReact. The noninvasive startReact response has previously been used to probe both brainstem utilization and motor planning. Our objective was to evaluate deficits in startReact hand extension movements in older adults. We hypothesized that startReact hand extension will be intact but delayed. Electromyography was recorded from the sternocleidomastoid (SCM) muscle to detect startle and the extensor digitorum communis (EDC) to quantify movement onset in both young (24 ± 1) and older adults (70 ± 11). Subjects were exposed to a startling loud sound when prepared to extend their hand. Trials were split into those where a startle did (SCM+) and did not (SCM−) occur. We found that startReact was intact but delayed in older adults. SCM+ onset latencies were faster than SCM− trials in both the populations, however, SCM+ onset latencies were slower in older adults compared to young (Δ = 8 msec). We conclude that the observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our objective was to utilize the noninvasive startReact phenomenon, which is mediated through the brainstem, to gain insight into brainstem processing in older adults. We found that startReact hand extension was intact but delayed in older adults. The observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our result that the startReact response is delayed in older individuals highlights that movements (e.g., posture, locomotion) and reflexes (e.g., long‐latency stretch reflexes) that are coordinated by the brainstem may have similar deficits in older adults.
Collapse
Affiliation(s)
| | - Eric J Perreault
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois Department of Biomedical Engineering, Northwestern University, Evanston, Illinois Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Claire F Honeycutt
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Gupta P, Markan CM. An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics. Front Neurosci 2014; 8:54. [PMID: 24765062 PMCID: PMC3980111 DOI: 10.3389/fnins.2014.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 03/09/2014] [Indexed: 11/21/2022] Open
Abstract
The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon.
Collapse
Affiliation(s)
- Priti Gupta
- VLSI Design Technology Lab, Department of Physics and Computer Science, Dayalbagh Educational Institute Agra, Uttar Pradesh, India
| | - C M Markan
- VLSI Design Technology Lab, Department of Physics and Computer Science, Dayalbagh Educational Institute Agra, Uttar Pradesh, India
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Age-related muscle weakness causes a staggering economic, public, and personal burden. Most research has focused on internal muscular mechanisms as the root cause to strength loss. Here, we briefly discuss age-related impairments in the brain and peripheral nerve structures that may theoretically lead to muscle weakness in old age. RECENT FINDINGS Neuronal atrophy in the brain is accompanied by electrical noise tied to declines in dopaminergic neurotransmission that degrades communication between neurons. Additionally, sensorimotor feedback loops that help regulate corticospinal excitability are impaired. In the periphery, there is evidence for motor unit loss, axonal atrophy, demyelination caused by oxidative damage to proteins and lipids, and modified transmission of the electrical signal through the neuromuscular junction. SUMMARY Recent evidence clearly indicates that muscle weakness associated with aging is not entirely explained by classically postulated atrophy of muscle. In this issue, which focuses on 'Ageing: Biology and Nutrition' we will highlight new findings on how nervous system changes contribute to the aging muscle phenotype. These findings indicate that the ability to communicate neural activity to skeletal muscle is impaired with advancing age, which raises the question of whether many of these age-related neurological changes are mechanistically linked to impaired performance of human skeletal muscle. Collectively, this work suggests that future research should explore the direct link of these 'upstream' neurological adaptions and onset of muscle weakness in elders. In the long term, this new focus might lead to novel strategies to attenuate the age-related loss of muscle strength.
Collapse
Affiliation(s)
- Todd M Manini
- Institute of Aging and the Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
10
|
Lingor P, Koch JC, Tönges L, Bähr M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 2012; 349:289-311. [PMID: 22392734 PMCID: PMC3375418 DOI: 10.1007/s00441-012-1362-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022]
Abstract
Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|