Atallah S, Parra-Davila E, Melani AGF, Romagnolo LG, Larach SW, Marescaux J. Robotic-assisted stereotactic real-time navigation: initial clinical experience and feasibility for rectal cancer surgery.
Tech Coloproctol 2019;
23:53-63. [PMID:
30656579 DOI:
10.1007/s10151-018-1914-y]
[Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND
Real-time stereotactic navigation for transanal total mesorectal excision has been demonstrated to be feasible in small pilot series using laparoscopic techniques. The possibility of real-time stereotactic navigation coupled with robotics has not been previously explored in a clinical setting.
METHODS
After pre-clinical assessment, and configuration of a robotic-assisted navigational system, two patients with locally advanced rectal cancer were selected for enrollment into a pilot study designed to assess the feasibility of navigation coupled with the robotic da Vinci Xi platform via TilePro interface. In one case, fluorescence-guided surgery was also used as an adjunct for structure localization, with local administration of indocyanine green into the ureters and at the tumor site.
RESULTS
Each operation was successfully completed with a robotic-assisted approach; image-guided navigation provided computed accuracy of ± 4.5 to 4.6 mm. The principle limitation encountered was navigation signal dropout due to temporary loss of direct line-of-sight with the navigational system's infrared camera. Subjectively, the aid of navigation assisted the operating surgeon in identifying critical anatomical planes. The combination of fluorescence with image-guided surgery further augmented the surgeon's perception of the operative field.
CONCLUSIONS
The combination of stereotactic navigation and robotic surgery is feasible, although some limitations and technical challenges were observed. For complex surgery, the addition of navigation to robotics can improve surgical precision. This will likely represent the next step in the evolution of robotics and in the development of digital surgery.
Collapse